BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 7548733)

  • 41. Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: possible explanation for species-specific pneumotoxicity.
    Bolton JL; Sevestre H; Ibe BO; Thompson JA
    Chem Res Toxicol; 1990; 3(1):65-70. PubMed ID: 2131827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation and biological targets of botanical o-quinones.
    Bolton JL; Dunlap TL; Dietz BM
    Food Chem Toxicol; 2018 Oct; 120():700-707. PubMed ID: 30063944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission.
    Kassahun K; Pearson PG; Tang W; McIntosh I; Leung K; Elmore C; Dean D; Wang R; Doss G; Baillie TA
    Chem Res Toxicol; 2001 Jan; 14(1):62-70. PubMed ID: 11170509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol.
    Lewis MA; Yoerg DG; Bolton JL; Thompson JA
    Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catechol formation: a novel pathway in the metabolism of sterigmatocystin and 11-methoxysterigmatocystin.
    Pfeiffer E; Fleck SC; Metzler M
    Chem Res Toxicol; 2014 Dec; 27(12):2093-9. PubMed ID: 25380456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions.
    Moridani MY; Scobie H; O'Brien PJ
    Toxicol Lett; 2002 Jul; 133(2-3):141-51. PubMed ID: 12119122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism and bioactivation of 3-methylindole by human liver microsomes.
    Yan Z; Easterwood LM; Maher N; Torres R; Huebert N; Yost GS
    Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioactivation of sitaxentan in liver microsomes, hepatocytes, and expressed human P450s with characterization of the glutathione conjugate by liquid chromatography tandem mass spectrometry.
    Erve JC; Gauby S; Maynard JW; Svensson MA; Tonn G; Quinn KP
    Chem Res Toxicol; 2013 Jun; 26(6):926-36. PubMed ID: 23721565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and isopropylphenol: relationship to toxicity.
    Thompson DC; Perera K; London R
    Chem Res Toxicol; 1995; 8(1):55-60. PubMed ID: 7703367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.
    Moridani MY; Cheon SS; Khan S; O'Brien PJ
    Chem Biol Interact; 2003 Jan; 142(3):317-33. PubMed ID: 12453669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 17 beta-estradiol metabolism by hamster hepatic microsomes: comparison of catechol estrogen O-methylation with catechol estrogen oxidation and glutathione conjugation.
    Butterworth M; Lau SS; Monks TJ
    Chem Res Toxicol; 1996 Jun; 9(4):793-9. PubMed ID: 8831825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential metabolism and bioactivation of the hepatotoxin benzbromarone: formation of glutathione adducts from a catechol intermediate.
    McDonald MG; Rettie AE
    Chem Res Toxicol; 2007 Dec; 20(12):1833-42. PubMed ID: 18020424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung.
    Thompson D; Constantin-Teodosiu D; Egestad B; Mickos H; Moldéus P
    Biochem Pharmacol; 1990 May; 39(10):1587-95. PubMed ID: 2337416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate.
    Sugumaran M
    Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome II, a yellow wing pigment of papilionid butterflies.
    Saul SJ; Sugumaran M
    FEBS Lett; 1991 Feb; 279(1):145-8. PubMed ID: 1995334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and characterization of a glutathione conjugate of ochratoxin A.
    Dai J; Park G; Wright MW; Adams M; Akman SA; Manderville RA
    Chem Res Toxicol; 2002 Dec; 15(12):1581-8. PubMed ID: 12482240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes.
    Yan Z; Zhong HM; Maher N; Torres R; Leo GC; Caldwell GW; Huebert N
    Drug Metab Dispos; 2005 Dec; 33(12):1867-76. PubMed ID: 16174805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trimethoprim: novel reactive intermediates and bioactivation pathways by cytochrome p450s.
    Damsten MC; de Vlieger JS; Niessen WM; Irth H; Vermeulen NP; Commandeur JN
    Chem Res Toxicol; 2008 Nov; 21(11):2181-7. PubMed ID: 18816075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of quinone methide metabolites of dauricine in human liver microsomes and in rat bile.
    Wang Y; Zhong D; Chen X; Zheng J
    Chem Res Toxicol; 2009 May; 22(5):824-34. PubMed ID: 19358519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.