BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7548760)

  • 21. Neurotoxicity and protein binding of 2,5-hexanedione in the hen.
    DeCaprio AP; Strominger NL; Weber P
    Toxicol Appl Pharmacol; 1983 Apr; 68(2):297-307. PubMed ID: 6857666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid cross-linking of proteins by 4-ketoaldehydes and 4-hydroxy-2-alkenals does not arise from the lysine-derived monoalkylpyrroles.
    Xu G; Liu Y; Kansal MM; Sayre LM
    Chem Res Toxicol; 1999 Sep; 12(9):855-61. PubMed ID: 10490508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence that pyrrole formation is a pathogenetic step in gamma-diketone neuropathy.
    Genter MB; Szakál-Quin G; Anderson CW; Anthony DC; Graham DG
    Toxicol Appl Pharmacol; 1987 Feb; 87(2):351-62. PubMed ID: 3103260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurofilament protein crosslinking in gamma-diketone neuropathy: in vitro and in vivo studies using the seaworm myxicola infundibulum.
    St Clair MB; Anthony DC; Wikstrand CJ; Graham DG
    Neurotoxicology; 1989; 10(4):743-56. PubMed ID: 2562540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microtubules with altered assembly kinetics have a decreased rate of kinesin-based transport.
    Redenbach DM; Richburg JH; Boekelheide K
    Cell Motil Cytoskeleton; 1994; 27(1):79-87. PubMed ID: 8194112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking.
    Graham DG; Anthony DC; Boekelheide K; Maschmann NA; Richards RG; Wolfram JW; Shaw BR
    Toxicol Appl Pharmacol; 1982 Jul; 64(3):415-22. PubMed ID: 6814014
    [No Abstract]   [Full Text] [Related]  

  • 27. Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls.
    Amarnath V; Amarnath K; Amarnath K; Davies S; Roberts LJ
    Chem Res Toxicol; 2004 Mar; 17(3):410-5. PubMed ID: 15025512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between levels of 2, 5-hexanedione and pyrrole adducts in tissues of rats exposure to n-hexane for 5-days.
    Yin H; Guo Y; Zeng T; Zhao X; Xie K
    PLoS One; 2013; 8(9):e76011. PubMed ID: 24098756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of N-acetylcysteine in protecting against 2,5-hexanedione neurotoxicity in a rat model: changes in urinary pyrroles levels and motor activity performance.
    Torres ME; dos Santos AP; Gonçalves LL; Andrade V; Batoréu MC; Mateus ML
    Environ Toxicol Pharmacol; 2014 Nov; 38(3):807-13. PubMed ID: 25305742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B
    Rushing BR; Selim MI
    Chem Res Toxicol; 2017 Jun; 30(6):1275-1285. PubMed ID: 28514848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential.
    Paz MM; Das A; Palom Y; He QY; Tomasz M
    J Med Chem; 2001 Aug; 44(17):2834-42. PubMed ID: 11495594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural elucidation of a 2:2 4-ketoaldehyde-amine adduct as a model for lysine-directed cross-linking of proteins by 4-ketoaldehydes.
    Xu G; Sayre LM
    Chem Res Toxicol; 1999 Sep; 12(9):862-8. PubMed ID: 10490509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicokinetic study of pyrrole adducts and its potential application for biological monitoring of 2,5-hexanedione subacute exposure.
    Yin HY; Guo Y; Song FY; Zeng T; Xie KQ
    Int Arch Occup Environ Health; 2014 Aug; 87(6):655-62. PubMed ID: 24078145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro quantitative structure-activity relationship assessment of pyrrole adducts production by gamma-diketone-forming neurotoxic solvents.
    Sanz P; Flores IC; Soriano T; Repetto G; Repetto M
    Toxicol In Vitro; 1995 Oct; 9(5):783-7. PubMed ID: 20650157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Giant axonopathy characterized by intermediate location of axonal enlargements and acceleration of neurofilament transport.
    Monaco S; Wongmongkolrit T; Shearson CM; Patton A; Schaetzle B; Autilio-Gambetti L; Gambetti P; Sayre LM
    Brain Res; 1990 Jun; 519(1-2):73-81. PubMed ID: 2118823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hair pyrrole adducts serve as biomarkers for peripheral nerve impairment induced by 2,5-hexanedione and n-hexane in rats.
    Li X; Wang Q; Li M; Wang S; Zhang C; Xie K
    PLoS One; 2018; 13(12):e0209939. PubMed ID: 30596762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of zinc protection against 2,5-hexanedione neurotoxicity: correlation of neurobehavioral testing with biomarkers of excretion.
    Mateus ML; dos Santos AP; Batoréu MC
    Neurotoxicology; 2002 Dec; 23(6):747-54. PubMed ID: 12520764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.
    Li Y; Jongberg S; Andersen ML; Davies MJ; Lund MN
    Free Radic Biol Med; 2016 Aug; 97():148-157. PubMed ID: 27212016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-state 13C-NMR spectroscopy of adduction products of 2,5-hexanedione with ribonuclease, albumin, and rat neurofilament protein.
    Yan B; DeCaprio AP; Zhu M; Bank S
    Chem Biol Interact; 1996 Oct; 102(2):101-16. PubMed ID: 8950225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic Thiosulfinates and Cyclic Disulfides Selectively Cross-Link Thiols While Avoiding Modification of Lone Thiols.
    Donnelly DP; Dowgiallo MG; Salisbury JP; Aluri KC; Iyengar S; Chaudhari M; Mathew M; Miele I; Auclair JR; Lopez SA; Manetsch R; Agar JN
    J Am Chem Soc; 2018 Jun; 140(24):7377-7380. PubMed ID: 29851341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.