These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 754878)

  • 1. Lipid body content and persistence of chlamydospores of Fusarium solani in soil.
    van Eck WH
    Can J Microbiol; 1978 Jan; 24(1):65-9. PubMed ID: 754878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of forming and dormant chlamydospores of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1634-42. PubMed ID: 974911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of membrane-filter techniques to study the ultrastructure of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1628-33. PubMed ID: 974910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani.
    Griffin GJ
    Can J Microbiol; 1976 Sep; 22(9):1381-9. PubMed ID: 10071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fine structure of mature and germinating chlamydospores of Fusarium oxysporum.
    Stevenson IL; Becker SA
    Can J Microbiol; 1979 Jul; 25(7):808-17. PubMed ID: 476555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum.
    Ohara T; Tsuge T
    Eukaryot Cell; 2004 Dec; 3(6):1412-22. PubMed ID: 15590816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of lipid bodies in the endoplasmic reticulum of Fusarium sulphureum.
    Schneider EF; Seaman WL
    Can J Microbiol; 1977 Feb; 23(2):190-6. PubMed ID: 837253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements for the rapid conversion of macroconidia of Fusarium sulphureum to chlamydospores.
    Barran LR; Schneider EF; Seaman WL
    Can J Microbiol; 1977 Feb; 23(2):148-51. PubMed ID: 837252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum.
    Ohara T; Inoue I; Namiki F; Kunoh H; Tsuge T
    Genetics; 2004 Jan; 166(1):113-24. PubMed ID: 15020411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a cellular body during differentiation of conidial chlamydospores in Fusarium.
    Schneider EF; Seaman WL
    Can J Microbiol; 1974 Sep; 20(9):1205-8. PubMed ID: 4421894
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of thiols on macroconidia of Fusarium sulphureum.
    Barran LR; Schneider EF
    Can J Microbiol; 1979 May; 25(5):618-27. PubMed ID: 476543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil].
    Strunnikova OK; Shakhnazarova VIu; Vishnevskaia NA; Chebotar' VK; Tikhonovich IA
    Mikrobiologiia; 2007; 76(5):675-81. PubMed ID: 18069329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydospore induction in pure culture in Fusarium solani.
    Cochrane VW; Cochrane JC
    Mycologia; 1971; 63(3):462-77. PubMed ID: 4935359
    [No Abstract]   [Full Text] [Related]  

  • 14. Growth responses of two phytopathogenic fungi to fernasan in culture media.
    Abdalla MH
    Mycopathologia; 1975 Jun; 55(3):169-73. PubMed ID: 1152969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrite reductase gene upregulated during conidiation is involved in macroconidium formation in Fusarium oxysporum.
    Iida Y; Kurata T; Harimoto Y; Tsuge T
    Phytopathology; 2008 Oct; 98(10):1099-106. PubMed ID: 18943456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of the exogenous carbon and nitrogen requirements for chlamydospore germination of Fusarium solani by contact with soil.
    Griffin GJ
    Can J Microbiol; 1973 Aug; 19(8):999-1005. PubMed ID: 4752344
    [No Abstract]   [Full Text] [Related]  

  • 17. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum.
    Mandeel QA
    Mycopathologia; 2007 Jan; 163(1):9-20. PubMed ID: 17216327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f.sp. lini in soil.
    Couteaudier Y; Alabouvette C
    Can J Microbiol; 1990 Aug; 36(8):551-6. PubMed ID: 2245379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation inside multicelled macroconidia of Fusarium culmorum during early germination.
    Chitarra GS; Breeuwer P; Rombouts FM; Abee T; Dijksterhuis J
    Fungal Genet Biol; 2005 Aug; 42(8):694-703. PubMed ID: 15914044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of conidial chlamydospores of Fusarium sulphureum in distilled water.
    Schneider EF; Seaman WL
    Can J Microbiol; 1974 Feb; 20(2):247-54. PubMed ID: 4595743
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.