These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7548859)

  • 1. The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions.
    Sutton DW; Schmid-Schönbein GW
    Biorheology; 1995; 32(1):29-42. PubMed ID: 7548859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pressure-flow relation for plasma in whole organ skeletal muscle and its experimental verification.
    Sutton DW; Schmid-Schönbein GW
    J Biomech Eng; 1991 Nov; 113(4):452-7. PubMed ID: 1762443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The viscosity of erythrocyte suspensions. A review of theory.
    HAYNES RH
    Biophys J; 1962 Jan; 2(1):95-103. PubMed ID: 13905677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte-leukocyte interactions in the vascular bed of isolated perfused rat lungs.
    Wikström T; Braide M; Bagge U; Risberg B
    Int J Microcirc Clin Exp; 1993 Feb; 12(1):17-32. PubMed ID: 8473067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study: perfusion of the micro- and macrocirculation as a function of the hematocrit value.
    Driessen G; Scheidt H; Inhoffen W; Sobota A; Malotta H; Schmid-Schönbein H
    Microvasc Res; 1988 Jan; 35(1):73-85. PubMed ID: 3343940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM; Jain RK
    Cancer Res; 1989 Jul; 49(13):3513-9. PubMed ID: 2731173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism for erythrocyte-mediated elevation of apparent viscosity by leukocytes in vivo without adhesion to the endothelium.
    Helmke BP; Sugihara-Seki M; Skalak R; Schmid-Schönbein GW
    Biorheology; 1998; 35(6):437-48. PubMed ID: 10656051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for increased blood flow resistance due to leukocytes.
    Helmke BP; Bremner SN; Zweifach BW; Skalak R; Schmid-Schönbein GW
    Am J Physiol; 1997 Dec; 273(6):H2884-90. PubMed ID: 9435628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of increased plasma viscosity and red blood cell aggregation on blood viscosity in vivo.
    Gustafsson L; Appelgren L; Myrvold HE
    Am J Physiol; 1981 Oct; 241(4):H513-8. PubMed ID: 6172042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmolality- and hematocrit-mediated flow behavior of RBC suspensions in 33 micrometer ID tubes.
    McKay CB; Meiselman HJ
    Biorheology; 1989; 26(4):863-74. PubMed ID: 2611376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of whole blood and plasma viscosity in term neonates by flow curve analysis with the LS300 viscometer1.
    Kuss N; Bauknecht E; Felbinger C; Gehm J; Gehm L; Pöschl J; Ruef P
    Clin Hemorheol Microcirc; 2015 Oct; 63(1):3-14. PubMed ID: 26444620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of organ resistance due to leukocyte perfusion.
    Sutton DW; Schmid-Schönbein GW
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1646-50. PubMed ID: 1621826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity of animal erythrocyte suspensions mixed with a perflurocarbon emulsion.
    Shrinivasan S; Eggleton CD
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(3):387-400. PubMed ID: 15508276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P; Will G; Schmidt F
    Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.