These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Arterial spin labeled carotid MR angiography: A phantom study examining the impact of technical and hemodynamic factors. Koktzoglou I; Giri S; Piccini D; Grodzki DM; Flanagan O; Murphy IG; Gupta N; Collins JD; Edelman RR Magn Reson Med; 2016 Jan; 75(1):295-301. PubMed ID: 25684192 [TBL] [Abstract][Full Text] [Related]
26. Electrocardiograph-triggered two-dimensional time-of-flight versus optimized contrast-enhanced three-dimensional MR angiography of the peripheral arteries. Vosshenrich R; Kopka L; Castillo E; Böttcher U; Graessner J; Grabbe E Magn Reson Imaging; 1998 Oct; 16(8):887-92. PubMed ID: 9814770 [TBL] [Abstract][Full Text] [Related]
27. Spatially and velocity-selective magnetization preparation for noncontrast-enhanced peripheral MR angiography. Shin T; Lee HS; Zun Z; Jang J NMR Biomed; 2023 Jul; 36(7):e4901. PubMed ID: 36632695 [TBL] [Abstract][Full Text] [Related]
28. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach. Trotier AJ; Lefrançois W; Ribot EJ; Thiaudiere E; Franconi JM; Miraux S Magn Reson Med; 2015 Mar; 73(3):984-94. PubMed ID: 24616047 [TBL] [Abstract][Full Text] [Related]
29. Noncontrast time-resolved pulmonary magnetic resonance angiography with consecutive beam saturation pulse and variable flip angles using three-dimensional fast spin echo: A preliminary study. Kan H; Mizuno K; Takizawa M; Shimohira M; Kawai T; Aoki T; Tsubokura S; Kasai H Magn Reson Imaging; 2022 Dec; 94():80-88. PubMed ID: 36122676 [TBL] [Abstract][Full Text] [Related]
30. 3D phase contrast EPI MR angiography of the carotid arteries. Wildermuth S; Debatin JF; Huisman TA; Leung DA; McKinnon GC J Comput Assist Tomogr; 1995; 19(6):871-8. PubMed ID: 8537518 [TBL] [Abstract][Full Text] [Related]
31. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Schubert T; Bieri O; Pansini M; Stippich C; Santini F Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842 [TBL] [Abstract][Full Text] [Related]
32. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method. Springer F; Steidle G; Martirosian P; Syha R; Claussen CD; Schick F Invest Radiol; 2011 Oct; 46(10):610-7. PubMed ID: 21577126 [TBL] [Abstract][Full Text] [Related]
33. Reduction of flow-related signal loss in flow-compensated 3D TOF MR angiography, using variable echo time (3D TOF-VTE). Jeong EK; Parker DL; Tsuruda JS; Won JY Magn Reson Med; 2002 Oct; 48(4):667-76. PubMed ID: 12353284 [TBL] [Abstract][Full Text] [Related]
34. Influence of imaging parameters, flow velocity, and pulsatile flow on three-dimensional time-of-flight MR angiography: experimental studies. Kodama T; Watanabe K Eur J Radiol; 1997 Dec; 26(1):83-91. PubMed ID: 9481591 [TBL] [Abstract][Full Text] [Related]
35. Investigation of the longitudinal relaxation rate of blood after gadobenate dimeglumine administration: sequence optimization, dynamic acquisition, and clinical impact for contrast-enhanced MR angiography of the carotid arteries. Neira C; Anzidei M; Napoli A; Kirchin MA; Cavallo Marincola B; Zaccagna F; Catalano C; Passariello R; Tedoldi F Invest Radiol; 2011 Dec; 46(12):774-82. PubMed ID: 21730871 [TBL] [Abstract][Full Text] [Related]
36. [Clinical implication of parameter-optimized 3D-FISP MR angiography (MRA) in children with aortic coarctation: comparison with catheter angiography]. Kramer U; Greil G; Dammann F; Schick F; Miller S; Fenchel M; Sieverding L; Claussen CD Rofo; 2004 Oct; 176(10):1458-65. PubMed ID: 15383978 [TBL] [Abstract][Full Text] [Related]
37. Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains. Li W; Xu F; Schär M; Liu J; Shin T; Zhao Y; van Zijl PCM; Wasserman BA; Qiao Y; Qin Q Magn Reson Med; 2018 Apr; 79(4):2014-2023. PubMed ID: 28799210 [TBL] [Abstract][Full Text] [Related]
38. Use of three-dimensional MR angiography for tracking a contrast bolus in the carotid artery. Melhem ER; Caruthers SD; Faddoul SG; Tello R; Jara H AJNR Am J Neuroradiol; 1999 Feb; 20(2):263-6. PubMed ID: 10094349 [TBL] [Abstract][Full Text] [Related]
39. Time-of-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles. Johst S; Wrede KH; Ladd ME; Maderwald S Invest Radiol; 2012 Aug; 47(8):445-50. PubMed ID: 22766907 [TBL] [Abstract][Full Text] [Related]
40. Calculation of the magnetization distribution for fluid flow in curved vessels. Jou LD; van Tyen R; Berger SA; Saloner D Magn Reson Med; 1996 Apr; 35(4):577-84. PubMed ID: 8992209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]