These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 7549480)
21. [Genetic diversity of AVR-pita alleles of rice blast fungus Magnaporthe grisea]. Ma BT; Qu GL; Shi J; Chen DX; Lin YF; Huang WJ; Li SG Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Dec; 41(6):495-9. PubMed ID: 19137822 [TBL] [Abstract][Full Text] [Related]
22. Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp. tritici on wheat Pm3 resistance alleles. Parlange F; Roffler S; Menardo F; Ben-David R; Bourras S; McNally KE; Oberhaensli S; Stirnweis D; Buchmann G; Wicker T; Keller B Fungal Genet Biol; 2015 Sep; 82():181-92. PubMed ID: 26165518 [TBL] [Abstract][Full Text] [Related]
23. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766 [TBL] [Abstract][Full Text] [Related]
24. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Dioh W; Tharreau D; Notteghem JL; Orbach M; Lebrun MH Mol Plant Microbe Interact; 2000 Feb; 13(2):217-27. PubMed ID: 10659712 [TBL] [Abstract][Full Text] [Related]
25. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Mitchell TK; Dean RA Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140 [TBL] [Abstract][Full Text] [Related]
27. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation. McCafferty HR; Talbot NJ Curr Genet; 1998 May; 33(5):352-61. PubMed ID: 9618586 [TBL] [Abstract][Full Text] [Related]
28. A single gene encodes a selective toxin causal to the development of tan spot of wheat. Ciuffetti LM; Tuori RP; Gaventa JM Plant Cell; 1997 Feb; 9(2):135-44. PubMed ID: 9061946 [TBL] [Abstract][Full Text] [Related]
29. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Chauhan RS; Farman ML; Zhang HB; Leong SA Mol Genet Genomics; 2002 Jul; 267(5):603-12. PubMed ID: 12172799 [TBL] [Abstract][Full Text] [Related]
30. Fungal avirulence genes: structure and possible functions. Laugé R; De Wit PJ Fungal Genet Biol; 1998 Aug; 24(3):285-97. PubMed ID: 9756710 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Farman ML; Eto Y; Nakao T; Tosa Y; Nakayashiki H; Mayama S; Leong SA Mol Plant Microbe Interact; 2002 Jan; 15(1):6-16. PubMed ID: 11843304 [TBL] [Abstract][Full Text] [Related]
32. Rearrangements at a DNA-fingerprint locus in the rice blast fungus. Shull V; Hamer JE Curr Genet; 1996 Aug; 30(3):263-71. PubMed ID: 8753657 [TBL] [Abstract][Full Text] [Related]
33. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Kang S; Lebrun MH; Farrall L; Valent B Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731 [TBL] [Abstract][Full Text] [Related]
34. Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus. Wu SC; Kauffmann S; Darvill AG; Albersheim P Mol Plant Microbe Interact; 1995; 8(4):506-14. PubMed ID: 8589407 [TBL] [Abstract][Full Text] [Related]
35. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Joosten MH; Cozijnsen TJ; De Wit PJ Nature; 1994 Jan; 367(6461):384-6. PubMed ID: 8114941 [TBL] [Abstract][Full Text] [Related]
36. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Zhou B; Qu S; Liu G; Dolan M; Sakai H; Lu G; Bellizzi M; Wang GL Mol Plant Microbe Interact; 2006 Nov; 19(11):1216-28. PubMed ID: 17073304 [TBL] [Abstract][Full Text] [Related]
37. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Hamer JE; Farrall L; Orbach MJ; Valent B; Chumley FG Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9981-5. PubMed ID: 2602385 [TBL] [Abstract][Full Text] [Related]
38. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Choi W; Dean RA Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122 [TBL] [Abstract][Full Text] [Related]
39. Evolution of the Eleusine subgroup of Pyricularia oryzae inferred from rearrangement at the Pwl1 locus. Tanaka M; Hyon GS; Murata T; Nakayashiki H; Tosa Y Mol Plant Microbe Interact; 2010 Jun; 23(6):771-83. PubMed ID: 20459316 [TBL] [Abstract][Full Text] [Related]
40. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]