These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7549770)

  • 1. Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii.
    Sugai JK; Delgenes JP
    Curr Microbiol; 1995 Oct; 31(4):239-44. PubMed ID: 7549770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435.
    Kern M; Haltrich D; Nidetzky B; Kulbe KD
    FEMS Microbiol Lett; 1997 Apr; 149(1):31-7. PubMed ID: 9103975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of D-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl.
    Ikeuchi T; Kiritani R; Azuma M; Ooshima H
    J Basic Microbiol; 2000; 40(3):167-75. PubMed ID: 10957958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate.
    de Arruda PV; Rodrigues Rde C; da Silva DD; Felipe Md
    Biodegradation; 2011 Jul; 22(4):815-22. PubMed ID: 20683763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utilization of rare and unnatural pentoses by yeast Torulopsis candida.
    Karassevitch NY
    Biochimie; 1976; 58(1-2):239-42. PubMed ID: 821541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ
    Appl Environ Microbiol; 1993 Jan; 59(1):40-6. PubMed ID: 8439166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of arabinose and xylose metabolism in Escherichia coli.
    Desai TA; Rao CV
    Appl Environ Microbiol; 2010 Mar; 76(5):1524-32. PubMed ID: 20023096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate.
    da Silva DD; das Graças de Almeida Felipe M; de Mancilha IM; da Silva SS
    Appl Biochem Biotechnol; 2005; 121-124():427-37. PubMed ID: 15917619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.
    Ammar EM; Wang X; Rao CV
    Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional implications and metabolizable energy value of D-xylose and L-arabinose in chicks.
    Schutte JB
    Poult Sci; 1990 Oct; 69(10):1724-30. PubMed ID: 2263548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons.
    Kang HY; Song S; Park C
    Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.