These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 7549884)

  • 1. De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology.
    Evans JS; Mathiowetz AM; Chan SI; Goddard WA
    Protein Sci; 1995 Jun; 4(6):1203-16. PubMed ID: 7549884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.
    Mathiowetz AM; Goddard WA
    Protein Sci; 1995 Jun; 4(6):1217-32. PubMed ID: 7549885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of di-n-propylglycine residues (Dpg) in peptides: crystal structures of a type I' beta-turn forming tetrapeptide and an alpha-helical tetradecapeptide.
    Hegde RP; Aravinda S; Rai R; Kaul R; Vijayalakshmi S; Rao RB; Shamala N; Balaram P
    J Pept Sci; 2008 May; 14(5):648-59. PubMed ID: 18085516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and use of protein backbone angle probabilities.
    Kang HS; Kurochkina NA; Lee B
    J Mol Biol; 1993 Jan; 229(2):448-60. PubMed ID: 8429556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-turn conformations in crystal structures of model peptides containing alpha,alpha-di-n-propylglycine and alpha,alpha-di-n-butylglycine.
    Crisma M; Valle G; Toniolo C; Prasad S; Rao RB; Balaram P
    Biopolymers; 1995 Jan; 35(1):1-9. PubMed ID: 7696549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational choice at alpha,alpha-di-n-propylglycine residues: helical or fully extended structures?
    Kaul R; Banumathi S; Velmurugan D; Rao RB; Balaram P
    Biopolymers; 2000 Sep; 54(3):159-67. PubMed ID: 10861376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation.
    Ulmschneider JP; Jorgensen WL
    J Am Chem Soc; 2004 Feb; 126(6):1849-57. PubMed ID: 14871118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo sampling method of amino acid sequences adaptable to given main-chain atoms in the proteins.
    Ogata K; Soejima K; Higo J
    J Biochem; 2006 Oct; 140(4):543-52. PubMed ID: 16945938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo folding of trans-membrane helical peptides in an implicit generalized Born membrane.
    Ulmschneider JP; Ulmschneider MB; Di Nola A
    Proteins; 2007 Nov; 69(2):297-308. PubMed ID: 17600830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-dependent conformational sampling using a database of phi(i)+1 and psi(i) angles for predicting polypeptide backbone conformations.
    Sudarsanam S; Srinivasan S
    Protein Eng; 1997 Oct; 10(10):1155-62. PubMed ID: 9488140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue.
    Lee HJ; Park HM; Lee KB
    Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain.
    Ali MR; Latif R; Davies TF; Mezei M
    J Biomol Struct Dyn; 2015; 33(5):1140-52. PubMed ID: 25012978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of C alpha geometry in protein structures.
    Oldfield TJ; Hubbard RE
    Proteins; 1994 Apr; 18(4):324-37. PubMed ID: 8208725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.