These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7549888)

  • 41. Evolution of parallel beta/alpha-barrel enzyme family lightened by structural data on starch-processing enzymes.
    Janecek S; Baláz S
    J Protein Chem; 1993 Oct; 12(5):509-14. PubMed ID: 8141995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Close evolutionary relatedness among functionally distantly related members of the (alpha/beta)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region.
    Janecek S
    FEBS Lett; 1995 Dec; 377(1):6-8. PubMed ID: 8543020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family.
    Gabrisko M; Janecek S
    FEBS J; 2009 Dec; 276(24):7265-78. PubMed ID: 19878315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues.
    Watanabe K; Kitamura K; Suzuki Y
    Appl Environ Microbiol; 1996 Jun; 62(6):2066-73. PubMed ID: 8787404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
    Kashiwabara S; Matsuki Y; Kishimoto T; Suzuki Y
    Biosci Biotechnol Biochem; 1998 Jun; 62(6):1093-102. PubMed ID: 9692189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino acid sequence of long chain alpha-hydroxy acid oxidase from rat kidney, a member of the family of FMN-dependent alpha-hydroxy acid-oxidizing enzymes.
    Diêp Lê KH; Lederer F
    J Biol Chem; 1991 Nov; 266(31):20877-81. PubMed ID: 1939137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving the prediction of secondary structure of 'TIM-barrel' enzymes.
    Niermann T; Kirschner K
    Protein Eng; 1991 Feb; 4(3):359-70. PubMed ID: 1857718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Segments of amino acid sequence similarity in beta-amylases.
    Friedberg F; Rhodes C
    Protein Seq Data Anal; 1988; 1(6):499-501. PubMed ID: 2464171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Domain evolution in the alpha-amylase family.
    Janecek S; Svensson B; Henrissat B
    J Mol Evol; 1997 Sep; 45(3):322-31. PubMed ID: 9302327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases.
    MacGregor EA; Jespersen HM; Svensson B
    FEBS Lett; 1996 Jan; 378(3):263-6. PubMed ID: 8557114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold.
    Kadumuri RV; Vadrevu R
    Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the alpha-amylase family defined by the fifth conserved sequence region.
    Oslancová A; Janecek S
    Cell Mol Life Sci; 2002 Nov; 59(11):1945-59. PubMed ID: 12530525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule.
    Watanabe K; Masuda T; Ohashi H; Mihara H; Suzuki Y
    Eur J Biochem; 1994 Dec; 226(2):277-83. PubMed ID: 8001545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical amino acids responsible for converting specificities of proteins and for enhancing enzyme evolution are located around beta-turn potentials: data-based prediction.
    Murakami M
    J Protein Chem; 1993 Dec; 12(6):783-9. PubMed ID: 8136029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence and structural features of the T-fold, an original tunnelling building unit.
    Colloc'h N; Poupon A; Mornon JP
    Proteins; 2000 May; 39(2):142-54. PubMed ID: 10737935
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes.
    Tiwari SP; Reuter N
    PLoS Comput Biol; 2016 Mar; 12(3):e1004834. PubMed ID: 27015412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolutionary markers in the (beta/alpha)8-barrel fold.
    Vega MC; Lorentzen E; Linden A; Wilmanns M
    Curr Opin Chem Biol; 2003 Dec; 7(6):694-701. PubMed ID: 14644177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution of alpha-amylases: architectural features and key residues in the stabilization of the (beta/alpha)(8) scaffold.
    Pujadas G; Palau J
    Mol Biol Evol; 2001 Jan; 18(1):38-54. PubMed ID: 11141191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pattern of amino acid replacements in alpha/beta-barrels.
    Dean AM; Neuhauser C; Grenier E; Golding GB
    Mol Biol Evol; 2002 Nov; 19(11):1846-64. PubMed ID: 12411594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The structure and evolution of alpha/beta barrel proteins.
    Reardon D; Farber GK
    FASEB J; 1995 Apr; 9(7):497-503. PubMed ID: 7737457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.