These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7551717)

  • 1. Biofilms produced by Pseudomonas aeruginosa and by Staphylococcus aureus on model medical devices.
    Kétyi I
    Acta Microbiol Immunol Hung; 1995; 42(2):221-7. PubMed ID: 7551717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for testing drug susceptibility of Pseudomonas aeruginosa and Staphylococcus aureus grown in biofilms on medical devices.
    Kétyi I
    Acta Microbiol Immunol Hung; 1995; 42(2):215-9. PubMed ID: 7551716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus.
    Eckhart L; Fischer H; Barken KB; Tolker-Nielsen T; Tschachler E
    Br J Dermatol; 2007 Jun; 156(6):1342-5. PubMed ID: 17459041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes.
    Bak J; Ladefoged SD; Tvede M; Begovic T; Gregersen A
    Biofouling; 2010 Jan; 26(1):31-8. PubMed ID: 20390554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UVC fluencies for preventative treatment of Pseudomonas aeruginosa contaminated polymer tubes.
    Bak J; Ladefoged SD; Begovic T; Winding A
    Biofouling; 2010 Oct; 26(7):821-8. PubMed ID: 20859812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm formation on tracheostomy tubes.
    Jarrett WA; Ribes J; Manaligod JM
    Ear Nose Throat J; 2002 Sep; 81(9):659-61. PubMed ID: 12353444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
    van der Plas MJ; Jukema GN; Wai SW; Dogterom-Ballering HC; Lagendijk EL; van Gulpen C; van Dissel JT; Bloemberg GV; Nibbering PH
    J Antimicrob Chemother; 2008 Jan; 61(1):117-22. PubMed ID: 17965032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Toté K; Berghe DV; Deschacht M; de Wit K; Maes L; Cos P
    Int J Antimicrob Agents; 2009 Jun; 33(6):525-31. PubMed ID: 19179053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis.
    Prince AA; Steiger JD; Khalid AN; Dogrhamji L; Reger C; Eau Claire S; Chiu AG; Kennedy DW; Palmer JN; Cohen NA
    Am J Rhinol; 2008; 22(3):239-45. PubMed ID: 18588755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants.
    Rodrigues LR; Banat IM; van der Mei HC; Teixeira JA; Oliveira R
    J Appl Microbiol; 2006 Mar; 100(3):470-80. PubMed ID: 16478486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of tissue-engineered skin to study in vitro biofilm development.
    Charles CA; Ricotti CA; Davis SC; Mertz PM; Kirsner RS
    Dermatol Surg; 2009 Sep; 35(9):1334-41. PubMed ID: 19496791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of an electronic nose for detection of biofilms.
    Thaler ER; Huang D; Giebeig L; Palmer J; Lee D; Hanson CW; Cohen N
    Am J Rhinol; 2008; 22(1):29-33. PubMed ID: 18284856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa.
    Schrier A; Greebel G; Attia H; Trokel S; Smith EF
    J Refract Surg; 2009 Sep; 25(9):S799-802. PubMed ID: 19772254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoinducer production and quorum-sensing dependent phenotypes of Pseudomonas aeruginosa vary according to isolation site during colonization of intubated patients.
    Favre-Bonté S; Chamot E; Köhler T; Romand JA; van Delden C
    BMC Microbiol; 2007 Apr; 7():33. PubMed ID: 17442101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice.
    Nejadnik MR; Engelsman AF; Saldarriaga Fernandez IC; Busscher HJ; Norde W; van der Mei HC
    J Antimicrob Chemother; 2008 Dec; 62(6):1323-5. PubMed ID: 18812426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial adhesion and growth on a polymer brush-coating.
    Nejadnik MR; van der Mei HC; Norde W; Busscher HJ
    Biomaterials; 2008 Oct; 29(30):4117-21. PubMed ID: 18674814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms.
    El-Azizi MA; Starks SE; Khardori N
    J Appl Microbiol; 2004; 96(5):1067-73. PubMed ID: 15078523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms.
    Teixeira PC; Leite GM; Domingues RJ; Silva J; Gibbs PA; Ferreira JP
    Int J Food Microbiol; 2007 Aug; 118(1):15-9. PubMed ID: 17610974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria and granulation tissue associated with Montgomery T-tubes.
    Schmäl F; Fegeler W; Terpe HJ; Hermann W; Stoll W; Becker K
    Laryngoscope; 2003 Aug; 113(8):1394-400. PubMed ID: 12897565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.