These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7552094)

  • 1. Altered vitamin D metabolism and receptor interaction with the target genes in renal failure: calcitriol receptor interaction with its target gene in renal failure.
    Hsu CH; Patel SR
    Curr Opin Nephrol Hypertens; 1995 Jul; 4(4):302-6. PubMed ID: 7552094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Schiff base formation on the function of the calcitriol receptor.
    Patel SR; Koenig RJ; Hsu CH
    Kidney Int; 1996 Nov; 50(5):1539-45. PubMed ID: 8914020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins.
    Patel SR; Ke HQ; Vanholder R; Koenig RJ; Hsu CH
    J Clin Invest; 1995 Jul; 96(1):50-9. PubMed ID: 7615822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glyoxylate on the function of the calcitriol receptor and vitamin D metabolism.
    Patel SR; Xu Y; Koenig RJ; Hsu CH
    Kidney Int; 1997 Jul; 52(1):39-44. PubMed ID: 9211344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glucose on the function of the calcitriol receptor and vitamin D metabolism.
    Patel SR; Xu Y; Koenig RJ; Hsu CH
    Kidney Int; 1997 Jul; 52(1):79-86. PubMed ID: 9211349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of nuclear uptake of calcitriol receptor by uremic ultrafiltrate.
    Patel SR; Ke HQ; Vanholder R; Hsu CH
    Kidney Int; 1994 Jul; 46(1):129-33. PubMed ID: 7933830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blunted response to vitamin D in uremia.
    Glorieux G; Vanholder R
    Kidney Int Suppl; 2001 Feb; 78():S182-5. PubMed ID: 11169007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of uremic solutions on protein-DNA-complex formation of the vitamin D receptor and other members of the nuclear receptor superfamily.
    Toell A; Degenhardt S; Grabensee B; Carlberg C
    J Cell Biochem; 1999 Sep; 74(3):386-94. PubMed ID: 10412040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of calcitriol receptor and its mRNA in normal and renal failure rats.
    Patel SR; Ke HQ; Hsu CH
    Kidney Int; 1994 Apr; 45(4):1020-7. PubMed ID: 8007571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription.
    Masuyama H; Jefcoat SC; MacDonald PN
    Mol Endocrinol; 1997 Feb; 11(2):218-28. PubMed ID: 9013769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New understanding of the molecular mechanism of receptor-mediated genomic actions of the vitamin D hormone.
    Haussler MR; Jurutka PW; Hsieh JC; Thompson PD; Selznick SH; Haussler CA; Whitfield GK
    Bone; 1995 Aug; 17(2 Suppl):33S-38S. PubMed ID: 8579895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered gene expression profile in the kidney of vitamin D receptor knockout mice.
    Li X; Zheng W; Li YC
    J Cell Biochem; 2003 Jul; 89(4):709-19. PubMed ID: 12858337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the impairment of the vitamin D activation pathway by cyclosporine A.
    Grenet O; Bobadilla M; Chibout SD; Steiner S
    Biochem Pharmacol; 2000 Feb; 59(3):267-72. PubMed ID: 10609555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D receptor: mechanisms for vitamin D resistance in renal failure.
    Dusso AS
    Kidney Int Suppl; 2003 Jun; (85):S6-9. PubMed ID: 12753256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction.
    Masuyama H; Brownfield CM; St-Arnaud R; MacDonald PN
    Mol Endocrinol; 1997 Sep; 11(10):1507-17. PubMed ID: 9280066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired vitamin D sensitivity.
    Máčová L; Bičíková M; Hampl R
    Physiol Res; 2018 Nov; 67(Suppl 3):S391-S400. PubMed ID: 30484666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation.
    Raval-Pandya M; Freedman LP; Li H; Christakos S
    Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets.
    Lin NU; Malloy PJ; Sakati N; al-Ashwal A; Feldman D
    J Clin Endocrinol Metab; 1996 Jul; 81(7):2564-9. PubMed ID: 8675579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness.
    Malloy PJ; Eccleshall TR; Gross C; Van Maldergem L; Bouillon R; Feldman D
    J Clin Invest; 1997 Jan; 99(2):297-304. PubMed ID: 9005998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.