These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7552255)

  • 1. Assessment of axonal dysfunction in an in vitro model of acute compressive injury to adult rat spinal cord axons.
    Fehlings MG; Nashmi R
    Brain Res; 1995 Apr; 677(2):291-9. PubMed ID: 7552255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model of acute compressive spinal cord injury in vitro.
    Fehlings MG; Nashmi R
    J Neurosci Methods; 1997 Feb; 71(2):215-24. PubMed ID: 9128159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury.
    Fehlings MG; Nashmi R
    Brain Res; 1996 Oct; 736(1-2):135-45. PubMed ID: 8930318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury.
    Nashmi R; Jones OT; Fehlings MG
    Eur J Neurosci; 2000 Feb; 12(2):491-506. PubMed ID: 10712629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger.
    Agrawal SK; Fehlings MG
    J Neurosci; 1996 Jan; 16(2):545-52. PubMed ID: 8551338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord.
    Shi R; Blight AR
    Neuroscience; 1997 Mar; 77(2):553-62. PubMed ID: 9472411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury.
    Anthes DL; Theriault E; Tator CH
    Brain Res; 1995 Dec; 702(1-2):1-16. PubMed ID: 8846063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury.
    Agrawal SK; Nashmi R; Fehlings MG
    Neuroscience; 2000; 99(1):179-88. PubMed ID: 10924962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels.
    Nashmi R; Fehlings MG
    Brain Res Brain Res Rev; 2001 Dec; 38(1-2):165-91. PubMed ID: 11750932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrolein-mediated conduction loss is partially restored by K⁺ channel blockers.
    Yan R; Page JC; Shi R
    J Neurophysiol; 2016 Feb; 115(2):701-10. PubMed ID: 26581866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomized double pulse stimulation for assessing stimulus frequency-dependent conduction in injured spinal and peripheral axons.
    Sakatani K; Iizuka H; Young W
    Electroencephalogr Clin Neurophysiol; 1991 Apr; 81(2):108-17. PubMed ID: 1708713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction properties of spinal cord axons in the myelin-deficient rat mutant.
    Utzschneider D; Black JA; Kocsis JD
    Neuroscience; 1992 Jul; 49(1):221-8. PubMed ID: 1407548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular potassium activity and axonal conduction in spinal cord of the myelin-deficient mutant rat.
    Young W; Rosenbluth J; Wojak JC; Sakatani K; Kim H
    Exp Neurol; 1989 Oct; 106(1):41-51. PubMed ID: 2551718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure.
    Shi R; Blight AR
    J Neurophysiol; 1996 Sep; 76(3):1572-80. PubMed ID: 8890277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery?
    Waxman SG
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S105-17. PubMed ID: 1588601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conduction block in acute and chronic spinal cord injury: different dose-response characteristics for reversal by 4-aminopyridine.
    Shi R; Kelly TM; Blight AR
    Exp Neurol; 1997 Dec; 148(2):495-501. PubMed ID: 9417828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.
    Jensen JM; Shi R
    J Neurophysiol; 2003 Oct; 90(4):2334-40. PubMed ID: 12853442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro.
    Blight AR
    Neuroscience; 1983 Dec; 10(4):1471-86. PubMed ID: 6664497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.