These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7553529)

  • 1. Mechanical properties of implantable biomaterials.
    Meaney DF
    Clin Podiatr Med Surg; 1995 Jul; 12(3):363-84. PubMed ID: 7553529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of fracture behaviour in biomaterials.
    Ichim I; Li Q; Li W; Swain MV; Kieser J
    Biomaterials; 2007 Mar; 28(7):1317-26. PubMed ID: 17123597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation.
    MencĂ­k J; He LH; Swain MV
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):318-25. PubMed ID: 19627838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens.
    Lill H; Hepp P; Korner J; Kassi JP; Verheyden AP; Josten C; Duda GN
    Arch Orthop Trauma Surg; 2003 Apr; 123(2-3):74-81. PubMed ID: 12721684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength.
    Fritsch A; Dormieux L; Hellmich C; Sanahuja J
    J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time-dependent healing function for immediate loaded implants.
    Winter W; Heckmann SM; Weber HP
    J Biomech; 2004 Dec; 37(12):1861-7. PubMed ID: 15519594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future materials for foot surgery.
    Latour RA
    Clin Podiatr Med Surg; 1995 Jul; 12(3):519-44. PubMed ID: 7553538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests.
    Wu JZ; Cutlip RG; Welcome D; Dong RG
    Biomed Mater Eng; 2006; 16(1):53-66. PubMed ID: 16410644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The viscoelastic behavior of dental adhesives: a nanoindentation study.
    Sadr A; Shimada Y; Lu H; Tagami J
    Dent Mater; 2009 Jan; 25(1):13-9. PubMed ID: 18579198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface.
    Albert K; Schledjewski R; Harbaugh M; Bleser S; Jamison R; Friedrich K
    Biomed Mater Eng; 1994; 4(3):199-211. PubMed ID: 7950869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a testing methodology to quantify bone load transfer patterns for multiple stemmed implants in a single bone with an application in the distal ulna.
    Austman RL; Quenneville CE; Beaton BJ; King GJ; Gordon KD; Dunning CE
    J Biomech Eng; 2008 Apr; 130(2):024502. PubMed ID: 18412513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion and other electrochemical aspects of biomaterials.
    Bundy KJ
    Crit Rev Biomed Eng; 1994; 22(3-4):139-251. PubMed ID: 8598129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key issues involved with the use of miniature specimens in the characterization of the mechanical behavior of polymeric biomaterials--a review.
    Lewis G
    J Biomed Mater Res; 2002; 63(5):455-66. PubMed ID: 12209888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of constant strain rate, composed of varying amplitude and frequency, of early loading on peri-implant bone (re)modelling.
    De Smet E; Jaecques SV; Jansen JJ; Walboomers F; Vander Sloten J; Naert IE
    J Clin Periodontol; 2007 Jul; 34(7):618-24. PubMed ID: 17555413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.
    Godara A; Raabe D; Green S
    Acta Biomater; 2007 Mar; 3(2):209-20. PubMed ID: 17236831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of bone inelastic response in interaction phenomena with dental implants.
    Natali AN; Carniel EL; Pavan PG
    Dent Mater; 2008 Apr; 24(4):561-9. PubMed ID: 18207565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures.
    Tanino F; Hayakawa I; Hirano S; Minakuchi S
    Int J Prosthodont; 2007; 20(2):193-8. PubMed ID: 17455444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.