BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 7553864)

  • 1. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.
    Jensen TJ; Loo MA; Pind S; Williams DB; Goldberg AL; Riordan JR
    Cell; 1995 Oct; 83(1):129-35. PubMed ID: 7553864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of CFTR by the ubiquitin-proteasome pathway.
    Ward CL; Omura S; Kopito RR
    Cell; 1995 Oct; 83(1):121-7. PubMed ID: 7553863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation.
    Oberdorf J; Carlson EJ; Skach WR
    Biochemistry; 2001 Nov; 40(44):13397-405. PubMed ID: 11683650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator.
    Gelman MS; Kannegaard ES; Kopito RR
    J Biol Chem; 2002 Apr; 277(14):11709-14. PubMed ID: 11812794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.
    Loo MA; Jensen TJ; Cui L; Hou Y; Chang XB; Riordan JR
    EMBO J; 1998 Dec; 17(23):6879-87. PubMed ID: 9843494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator.
    Skach WR
    Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras.
    Haggie PM; Stanton BA; Verkman AS
    J Biol Chem; 2002 May; 277(19):16419-25. PubMed ID: 11877404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway.
    Schubert U; Antón LC; Bacík I; Cox JH; Bour S; Bennink JR; Orlowski M; Strebel K; Yewdell JW
    J Virol; 1998 Mar; 72(3):2280-8. PubMed ID: 9499087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of the ubiquitin-proteasome system by protein aggregation.
    Bence NF; Sampat RM; Kopito RR
    Science; 2001 May; 292(5521):1552-5. PubMed ID: 11375494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome and thiol involvement in quality control of glycosylphosphatidylinositol anchor addition.
    Wilbourn B; Nesbeth DN; Wainwright LJ; Field MC
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):111-8. PubMed ID: 9576858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments.
    Benharouga M; Haardt M; Kartner N; Lukacs GL
    J Cell Biol; 2001 May; 153(5):957-70. PubMed ID: 11381082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC; Patterson C; Zhang W; Younger JM; Cyr DM
    Nat Cell Biol; 2001 Jan; 3(1):100-5. PubMed ID: 11146634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated Co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein.
    Zhou M; Fisher EA; Ginsberg HN
    J Biol Chem; 1998 Sep; 273(38):24649-53. PubMed ID: 9733761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.
    Zhang Y; Nijbroek G; Sullivan ML; McCracken AA; Watkins SC; Michaelis S; Brodsky JL
    Mol Biol Cell; 2001 May; 12(5):1303-14. PubMed ID: 11359923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct ER/IC gamma-secretase competes with the proteasome for cleavage of APP.
    Skovronsky DM; Pijak DS; Doms RW; Lee VM
    Biochemistry; 2000 Feb; 39(4):810-7. PubMed ID: 10651647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane.
    Xiong X; Chong E; Skach WR
    J Biol Chem; 1999 Jan; 274(5):2616-24. PubMed ID: 9915789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP.
    Lukacs GL; Mohamed A; Kartner N; Chang XB; Riordan JR; Grinstein S
    EMBO J; 1994 Dec; 13(24):6076-86. PubMed ID: 7529176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasome-dependent degradation of the human estrogen receptor.
    Nawaz Z; Lonard DM; Dennis AP; Smith CL; O'Malley BW
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1858-62. PubMed ID: 10051559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.