BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7554125)

  • 1. Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate.
    Yanagida S; Luo CS; Doyle M; Pohost GM; Pike MM
    Circ Res; 1995 Oct; 77(4):773-83. PubMed ID: 7554125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways of Rb+ influx and their relation to intracellular [Na+] in the perfused rat heart. A 87Rb and 23Na NMR study.
    Kupriyanov VV; Stewart LC; Xiang B; Kwak J; Deslauriers R
    Circ Res; 1995 May; 76(5):839-51. PubMed ID: 7729001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxidant exposure on substrate utilization and high-energy phosphates in isolated rat hearts.
    Burton KP; Jones JG; Le TH; Sherry AD; Malloy CR
    Circ Res; 1994 Jul; 75(1):97-104. PubMed ID: 7912169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of K(atp)channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection.
    Fukuda H; Luo CS; Gu X; Guo L; Digerness SB; Li J; Pike MM
    J Mol Cell Cardiol; 2001 Mar; 33(3):545-60. PubMed ID: 11181022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 23Na and 31P nuclear magnetic resonance studies of ischemia-induced ventricular fibrillation. Alterations of intracellular Na+ and cellular energy.
    Pike MM; Luo CS; Yanagida S; Hageman GR; Anderson PG
    Circ Res; 1995 Aug; 77(2):394-406. PubMed ID: 7614723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protection by pyruvate against inhibition of Na+, K(+)-ATPase by a free radical generating system containing t-butylhydroperoxide.
    Clough D; Bünger R
    Life Sci; 1995; 57(10):931-43. PubMed ID: 7643718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of cytosolic ionic and energetic milieu change to ischemia- and reperfusion-induced injury in guinea pig heart: fluorometry and nuclear magnetic resonance studies.
    Hotta Y; Fujita M; Nakagawa J; Ando H; Takeya K; Ishikawa N; Sakakibara J
    J Cardiovasc Pharmacol; 1998 Jan; 31(1):146-56. PubMed ID: 9456289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate?
    Cross HR; Clarke K; Opie LH; Radda GK
    J Mol Cell Cardiol; 1995 Jul; 27(7):1369-81. PubMed ID: 7473783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P-NMR of high-energy phosphates in perfused rat heart during metabolic acidosis.
    Jelicks LA; Gupta R
    Am J Physiol; 1992 Sep; 263(3 Pt 2):H903-9. PubMed ID: 1415618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure.
    Bünger R; Mallet RT; Hartman DA
    Eur J Biochem; 1989 Mar; 180(1):221-33. PubMed ID: 2707262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycogen utilization and ischemic injury in the isolated rat heart.
    Schaefer S; Ramasamy R
    Cardiovasc Res; 1997 Jul; 35(1):90-8. PubMed ID: 9302351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic substrates can alter postischemic recovery in preconditioned ischemic heart.
    Fralix TA; Steenbergen C; London RE; Murphy E
    Am J Physiol; 1992 Jul; 263(1 Pt 1):C17-23. PubMed ID: 1636676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protective action of pyruvate on recovery of ischemic rat heart: comparison with other oxidizable substrates.
    Cavallini L; Valente M; Rigobello MP
    J Mol Cell Cardiol; 1990 Feb; 22(2):143-54. PubMed ID: 2182887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-induced changes in the lipid content of ischemic and reperfused myocardium. Its relation to hemodynamic recovery.
    de Groot MJ; Coumans WA; Willemsen PH; van der Vusse GJ
    Circ Res; 1993 Jan; 72(1):176-86. PubMed ID: 8417840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED; White LT
    Circulation; 1995 Apr; 91(7):2071-9. PubMed ID: 7895366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic inhibition in the perfused rat heart: evidence for glycolytic requirement for normal sodium homeostasis.
    Dizon J; Burkhoff D; Tauskela J; Whang J; Cannon P; Katz J
    Am J Physiol; 1998 Apr; 274(4):H1082-9. PubMed ID: 9575910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation.
    DeBoer LW; Bekx PA; Han L; Steinke L
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1571-6. PubMed ID: 8238569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inosine on glycolysis and contracture during myocardial ischemia.
    Lewandowski ED; Johnston DL; Roberts R
    Circ Res; 1991 Feb; 68(2):578-87. PubMed ID: 1991356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis.
    Camacho SA; Parmley WW; James TL; Abe H; Wu ST; Botvinick EH; Watters TA; Schiller N; Sievers R; Wikman-Coffelt J
    Cardiovasc Res; 1988 Mar; 22(3):193-203. PubMed ID: 3167943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.