BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 7554146)

  • 1. Endoplasmic reticulum Ca2+ depletion unmasks a caffeine-induced Ca2+ influx in human aortic endothelial cells.
    Corda S; Spurgeon HA; Lakatta EG; Capogrossi MC; Ziegelstein RC
    Circ Res; 1995 Nov; 77(5):927-35. PubMed ID: 7554146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine-sensitive intracellular Ca2+ store in fresh endothelial cells and evidence for ryanodine receptors.
    Wang X; Lau F; Li L; Yoshikawa A; van Breemen C
    Circ Res; 1995 Jul; 77(1):37-42. PubMed ID: 7788880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of evoked contractions in rat arteries by ryanodine, thapsigargin, and cyclopiazonic acid.
    Shima H; Blaustein MP
    Circ Res; 1992 May; 70(5):968-77. PubMed ID: 1533181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cytosolic Ca2+ concentration by thapsigargin and cyclopiazonic acid in human aortic endothelial cells.
    Hosoki E; Iijima T
    Eur J Pharmacol; 1995 Jan; 288(2):131-7. PubMed ID: 7720774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional Ca2+ release from the endoplasmic reticulum activates Ca2+ entry in freshly isolated rabbit aortic endothelial cells.
    Sasajima H; Wang X; van Breemen C
    Biochem Biophys Res Commun; 1997 Dec; 241(2):471-5. PubMed ID: 9425294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in rat aortic endothelial free calcium mediated by metabolically sensitive calcium release from endoplasmic reticulum.
    Ziegelstein RC; Cheng L; Aversano T; Ouyang P; Lakatta EG; Silverman HS
    Cardiovasc Res; 1994 Sep; 28(9):1433-9. PubMed ID: 7954656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked tensions in rabbit aorta by emptying intracellular Ca2+ stores with cyclopiazonic acid, thapsigargin, and ryanodine.
    Luo DL; Li WH
    Zhongguo Yao Li Xue Bao; 1995 May; 16(3):280-4. PubMed ID: 7660829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells.
    Cabello OA; Schilling WP
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells.
    Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells: regulation by cyclic ADP-ribose.
    Ozawa T; Nishiyama A
    J Membr Biol; 1997 Apr; 156(3):231-9. PubMed ID: 9096064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two different Ca2+ entry pathways dependent on depletion of internal Ca2+ pools in rat aorta.
    Noguera MA; Madrero Y; Ivorra MD; D'Ocon P
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Feb; 357(2):92-9. PubMed ID: 9521481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential role of intracellular Ca2+ stores in regulation of isometric force in NIH 3T3 fibroblast fibres.
    Nobe K; Nobe H; Obara K; Paul RJ
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):669-79. PubMed ID: 11118497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones.
    Solovyova N; Verkhratsky A
    Pflugers Arch; 2003 Jul; 446(4):447-54. PubMed ID: 12764616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple mechanisms of activating Ca2+ entry in freshly isolated rabbit aortic endothelial cells.
    Wang X; van Breemen C
    J Vasc Res; 1997; 34(3):196-207. PubMed ID: 9226301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats.
    Kanagy NL; Ansari MN; Ghosh S; Webb RC
    J Hypertens; 1994 Dec; 12(12):1365-72. PubMed ID: 7706695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells.
    Saqr HE; Guan Z; Yates AJ; Stokes BT
    Neurochem Int; 1999 Dec; 35(6):411-22. PubMed ID: 10524708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells.
    Dyachok O; Tufveson G; Gylfe E
    Cell Calcium; 2004 Jul; 36(1):1-9. PubMed ID: 15126051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release.
    Hutcheson IR; Griffith TM
    Br J Pharmacol; 1997 Sep; 122(1):117-25. PubMed ID: 9298537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ release from Ca2+ stores, particularly from ryanodine-sensitive Ca2+ stores, is required for the induction of LTD in cultured cerebellar Purkinje cells.
    Kohda K; Inoue T; Mikoshiba K
    J Neurophysiol; 1995 Nov; 74(5):2184-8. PubMed ID: 8592207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.