These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 7554433)
21. Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro. Ehrich M; Van Tassell R; Li Y; Zhou Z; Kepley CL Toxicol In Vitro; 2011 Feb; 25(1):301-7. PubMed ID: 20888407 [TBL] [Abstract][Full Text] [Related]
22. [Inhibition and reactivation of cholinesterases after poisoning with paraoxon and DFP in vitro]. LATKI O; ERDMANN WD Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1961; 240():514-22. PubMed ID: 13759366 [No Abstract] [Full Text] [Related]
23. Effects of paraoxon on neuronal and lymphocytic cholinergic systems. Charoenying T; Suriyo T; Thiantanawat A; Chaiyaroj SC; Parkpian P; Satayavivad J Environ Toxicol Pharmacol; 2011 Jan; 31(1):119-28. PubMed ID: 21787676 [TBL] [Abstract][Full Text] [Related]
24. Design and structure-activity relationships of antidotes to organophosphorus anticholinesterase agents. Gray AP Drug Metab Rev; 1984; 15(3):557-89. PubMed ID: 6386410 [No Abstract] [Full Text] [Related]
25. Diisopropylphosphorofluoridate-induced depression of compound action potential of frog sciatic nerve in vitro is mediated through the inhibition of cholinesterase activity. Deshpande SB; Kumar P; Sachan AS; Dube SN; Das Gupta S J Appl Toxicol; 1996; 16(6):497-500. PubMed ID: 8956095 [TBL] [Abstract][Full Text] [Related]
26. Properties of phenyl valerate esterase activities from chicken serum are comparable with soluble esterases of peripheral nerves in relation with organophosphorus compounds inhibition. Garcia-Pérez AG; Barril J; Estévez J; Vilanova E Toxicol Lett; 2003 Apr; 142(1-2):1-10. PubMed ID: 12765233 [TBL] [Abstract][Full Text] [Related]
27. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Jun D; Musilova L; Kuca K; Kassa J; Bajgar J Chem Biol Interact; 2008 Sep; 175(1-3):421-4. PubMed ID: 18617161 [TBL] [Abstract][Full Text] [Related]
28. Effect of tacrine on intracellular calcium in cholinergic SN56 neuronal cells. Dolezal V; Lisá V; Tucek S Brain Res; 1997 Sep; 769(2):219-24. PubMed ID: 9374189 [TBL] [Abstract][Full Text] [Related]
29. Avian embryonic brain reaggregate culture system. II. NTE activity discriminates between effects of a single neuropathic or nonneuropathic organophosphorus compound exposure. Funk KA; Liu CH; Higgins RJ; Wilson BW Toxicol Appl Pharmacol; 1994 Jan; 124(1):159-63. PubMed ID: 8291056 [TBL] [Abstract][Full Text] [Related]
30. Degradation of organophosphorus neurotoxicity in SY5Y neuroblastoma cells by organophosphorus hydrolase (OPH). Cho TM; Wild JR; Donnelly KC; Tiffany-Castiglioni E J Toxicol Environ Health A; 2006 Aug; 69(15):1413-29. PubMed ID: 16766477 [TBL] [Abstract][Full Text] [Related]
31. Electrophysiological estimation of the actions of acetylcholinesterase inhibitors on acetylcholine receptor and cholinesterase in physically isolated Aplysia neurones. Oyama Y; Hori N; Evans ML; Allen CN; Carpenter DO Br J Pharmacol; 1989 Mar; 96(3):573-82. PubMed ID: 2720293 [TBL] [Abstract][Full Text] [Related]
32. Neurotoxicity of acute and repeated treatments of tabun, paraoxon, diisopropyl fluorophosphate and isofenphos to the hen. Henderson JD; Higgins RJ; Dacre JC; Wilson BW Toxicology; 1992; 72(2):117-29. PubMed ID: 1566275 [TBL] [Abstract][Full Text] [Related]
33. High concentration of trichlorfon (1mM) disrupts axonal cytoskeleton and decreases the expression of plasticity-related proteins in SH-SY5Y cells. Fernandes LS; Emerick GL; Ferreira RS; Santos NAGD; Santos ACD Toxicol In Vitro; 2017 Mar; 39():84-92. PubMed ID: 27939611 [TBL] [Abstract][Full Text] [Related]
34. Carboxylesterases in guinea pig. A comparison of the different isoenzymes with regard to inhibition by organophosphorus compounds in vivo and in vitro. Gaustad R; Johnsen H; Fonnum F Biochem Pharmacol; 1991 Sep; 42(7):1335-43. PubMed ID: 1930257 [TBL] [Abstract][Full Text] [Related]
35. Influence of the route of exposure on the acute toxicity of cholinesterase inhibitors. Natoff IL Eur J Toxicol; 1970; 3(6):363-7. PubMed ID: 5520490 [No Abstract] [Full Text] [Related]
36. The use of spinal cord cell cultures in the study of neurotoxicological agents. Goldberg AM; Brookes N; Burt DR Toxicology; 1980; 17(2):233-5. PubMed ID: 7210008 [TBL] [Abstract][Full Text] [Related]
37. Involvement of the bed nucleus of the stria terminalis in hippocampal cholinergic system-mediated activation of the hypothalamo--pituitary--adrenocortical axis in rats. Zhu W; Umegaki H; Suzuki Y; Miura H; Iguchi A Brain Res; 2001 Oct; 916(1-2):101-6. PubMed ID: 11597596 [TBL] [Abstract][Full Text] [Related]
38. Brain cholinesterases. Differentiation of target enzymes for toxic organophosphorus compounds. Chemnitius JM; Haselmeyer KH; Zech R Biochem Pharmacol; 1983 Jun; 32(11):1693-9. PubMed ID: 6870909 [TBL] [Abstract][Full Text] [Related]
39. Comparison of the effects of diisopropylfluorophosphate, sarin, soman, and tabun on toxicity and brain acetylcholinesterase activity in mice. Tripathi HL; Dewey WL J Toxicol Environ Health; 1989; 26(4):437-46. PubMed ID: 2709438 [TBL] [Abstract][Full Text] [Related]
40. Bicyclic phosphorus esters: high toxicity without cholinesterase inhibition. Bellet EM; Casida JE Science; 1973 Dec; 182(4117):1135-6. PubMed ID: 4356280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]