BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7555693)

  • 1. Sulphate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems.
    Ushida K; Ohashi Y; Tokura M; Miyazaki K; Kojima Y
    Dtsch Tierarztl Wochenschr; 1995 Apr; 102(4):154-6. PubMed ID: 7555693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro.
    Asanuma N; Iwamoto M; Hino T
    J Dairy Sci; 1999 Apr; 82(4):780-7. PubMed ID: 10212465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane oxidation and its coupled electron-sink reactions in ruminal fluid.
    Kajikawa H; Valdes C; Hillman K; Wallace RJ; J Newbold C
    Lett Appl Microbiol; 2003; 36(6):354-7. PubMed ID: 12753241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ; Hu WL; Liu JX
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic treatment of landfill leachate by sulfate reduction.
    Henry JG; Prasad D
    Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity.
    Robichaux M; Howell M; Boopathy R
    Curr Microbiol; 2003 Jul; 47(1):12-6. PubMed ID: 12783186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine.
    Gibson GR; Cummings JH; Macfarlane GT
    J Appl Bacteriol; 1988 Sep; 65(3):241-7. PubMed ID: 2852666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical markers for rumen methanogens and methanogenesis.
    McCartney CA; Bull ID; Dewhurst RJ
    Animal; 2013 Jun; 7 Suppl 2():409-17. PubMed ID: 23739482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibition of methanogenesis in the rumen of sheep. I. Methanogenesis before administration of inhibitors].
    Zawadzki W
    Pol Arch Weter; 1986; 25(1):111-26. PubMed ID: 3448596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient.
    O'Sullivan LA; Sass AM; Webster G; Fry JC; Parkes RJ; Weightman AJ
    FEMS Microbiol Ecol; 2013 Jul; 85(1):143-57. PubMed ID: 23480711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attempts to induce reductive acetogenesis into a sheep rumen.
    Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L
    Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds.
    Stasik S; Wendt-Potthoff K
    Chemosphere; 2014 May; 103():59-66. PubMed ID: 24325799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of microbial populations in cellulose fermentation.
    Wolin MJ; Miller TL
    Fed Proc; 1983 Jan; 42(1):109-13. PubMed ID: 6848372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of metabolic inhibitors to study H2 consumption by human feces: evidence for a pathway other than methanogenesis and sulfate reduction.
    Strocchi A; Ellis CJ; Levitt MD
    J Lab Clin Med; 1993 Feb; 121(2):320-7. PubMed ID: 8433043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials.
    Goel G; Makkar HP; Becker K
    J Appl Microbiol; 2008 Sep; 105(3):770-7. PubMed ID: 18422554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield.
    Li Q; Ma Z; Huo J; Zhang X; Wang R; Zhang S; Jiao J; Dong X; Janssen PH; Ungerfeld EM; Greening C; Tan Z; Wang M
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut.
    Gibson GR; Macfarlane GT; Cummings JH
    J Appl Bacteriol; 1988 Aug; 65(2):103-11. PubMed ID: 3204069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic constraints on methanogenic crude oil biodegradation.
    Dolfing J; Larter SR; Head IM
    ISME J; 2008 Apr; 2(4):442-52. PubMed ID: 18079730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.