These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 7556057)
21. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops. Linde CC; Smith LM; Peakall R BMC Evol Biol; 2016 May; 16():101. PubMed ID: 27176034 [TBL] [Abstract][Full Text] [Related]
22. Transformation of the plant pathogenic fungus, Rhynchosporium secalis. Rohe M; Searle J; Newton AC; Knogge W Curr Genet; 1996 May; 29(6):587-90. PubMed ID: 8662199 [TBL] [Abstract][Full Text] [Related]
23. Defence-related gene activation during an incompatible interaction between Stagonospora (Septoria) nodorum and barley (Hordeum vulgare L.) coleoptile cells. Stevens C; Titarenko E; Hargreaves JA; Gurr SJ Plant Mol Biol; 1996 Jul; 31(4):741-9. PubMed ID: 8806405 [TBL] [Abstract][Full Text] [Related]
24. Stimulation of Barley Plasmalemma H+-ATPase by Phytotoxic Peptides from the Fungal Pathogen Rhynchosporium secalis. Wevelsiep L; Rupping E; Knogge W Plant Physiol; 1993 Jan; 101(1):297-301. PubMed ID: 12231685 [TBL] [Abstract][Full Text] [Related]
25. Pathogen populations evolve to greater race complexity in agricultural systems--evidence from analysis of Rhynchosporium secalis virulence data. Zhan J; Yang L; Zhu W; Shang L; Newton AC PLoS One; 2012; 7(6):e38611. PubMed ID: 22723870 [TBL] [Abstract][Full Text] [Related]
26. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Molina A; Mena M; Carbonero P; García-Olmedo F Plant Mol Biol; 1997 Mar; 33(5):803-10. PubMed ID: 9106504 [TBL] [Abstract][Full Text] [Related]
27. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Lu X; Kracher B; Saur IM; Bauer S; Ellwood SR; Wise R; Yaeno T; Maekawa T; Schulze-Lefert P Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6486-E6495. PubMed ID: 27702901 [TBL] [Abstract][Full Text] [Related]
28. Fungal avirulence genes: structure and possible functions. Laugé R; De Wit PJ Fungal Genet Biol; 1998 Aug; 24(3):285-97. PubMed ID: 9756710 [TBL] [Abstract][Full Text] [Related]
29. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Barua UM; Chalmers KJ; Hackett CA; Thomas WT; Powell W; Waugh R Heredity (Edinb); 1993 Aug; 71 ( Pt 2)():177-84. PubMed ID: 8376177 [TBL] [Abstract][Full Text] [Related]
30. The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Van den Ackerveken GF; Vossen P; De Wit PJ Plant Physiol; 1993 Sep; 103(1):91-6. PubMed ID: 8208859 [TBL] [Abstract][Full Text] [Related]
31. Association mapping reveals a reciprocal virulence/avirulence locus within diverse US Pyrenophora teres f. maculata isolates. Clare SJ; Duellman KM; Richards JK; Poudel RS; Merrick LF; Friesen TL; Brueggeman RS BMC Genomics; 2022 Apr; 23(1):285. PubMed ID: 35397514 [TBL] [Abstract][Full Text] [Related]
32. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Zareie R; Melanson DL; Murphy PJ Mol Plant Microbe Interact; 2002 Oct; 15(10):1031-9. PubMed ID: 12437301 [TBL] [Abstract][Full Text] [Related]
33. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Valásek L; Nielsen KH; Zhang F; Fekete CA; Hinnebusch AG Mol Cell Biol; 2004 Nov; 24(21):9437-55. PubMed ID: 15485912 [TBL] [Abstract][Full Text] [Related]
34. Genetic variability for pathogenicity, isozyme, ribosomal DNA and colony color variants in populations of Rhynchosporium secalis. McDermott JM; McDonald BA; Allard RW; Webster RK Genetics; 1989 Jul; 122(3):561-5. PubMed ID: 2759420 [TBL] [Abstract][Full Text] [Related]
35. Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae. Asano K; Phan L; Anderson J; Hinnebusch AG J Biol Chem; 1998 Jul; 273(29):18573-85. PubMed ID: 9660829 [TBL] [Abstract][Full Text] [Related]
36. Construction of a YAC library from barley cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald (Rhynchosporium secalis). Schmidt D; Röder MS; Dargatz H; Wolf N; Schweizer GF; Tekauz A; Ganal MW Genome; 2001 Dec; 44(6):1031-40. PubMed ID: 11768206 [TBL] [Abstract][Full Text] [Related]
37. RRS1, a conserved essential gene, encodes a novel regulatory protein required for ribosome biogenesis in Saccharomyces cerevisiae. Tsuno A; Miyoshi K; Tsujii R; Miyakawa T; Mizuta K Mol Cell Biol; 2000 Mar; 20(6):2066-74. PubMed ID: 10688653 [TBL] [Abstract][Full Text] [Related]
38. New insights into the infection process of Rhynchosporium secalis in barley using GFP. Linsell KJ; Keiper FJ; Forgan A; Oldach KH Fungal Genet Biol; 2011 Feb; 48(2):124-31. PubMed ID: 20955811 [TBL] [Abstract][Full Text] [Related]
39. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Centis S; Dumas B; Fournier J; Marolda M; Esquerré-Tugayé MT Gene; 1996 Apr; 170(1):125-9. PubMed ID: 8621072 [TBL] [Abstract][Full Text] [Related]
40. The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses. Mohd-Assaad N; McDonald BA; Croll D Environ Microbiol; 2019 Aug; 21(8):2677-2695. PubMed ID: 30838748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]