These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 7556089)
21. Specific interaction with rhodopsin is dependent on the gamma subunit type in a G protein. Kisselev O; Gautam N J Biol Chem; 1993 Nov; 268(33):24519-22. PubMed ID: 8227005 [TBL] [Abstract][Full Text] [Related]
22. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769 [TBL] [Abstract][Full Text] [Related]
23. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895 [TBL] [Abstract][Full Text] [Related]
24. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal. Han M; Groesbeek M; Smith SO; Sakmar TP Biochemistry; 1998 Jan; 37(2):538-45. PubMed ID: 9425074 [TBL] [Abstract][Full Text] [Related]
25. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides. Fawzi AB; Northup JK Biochemistry; 1990 Apr; 29(15):3804-12. PubMed ID: 2187531 [TBL] [Abstract][Full Text] [Related]
26. The intrinsic fluorescence of the alpha subunit of transducin. Measurement of receptor-dependent guanine nucleotide exchange. Phillips WJ; Cerione RA J Biol Chem; 1988 Oct; 263(30):15498-505. PubMed ID: 3049609 [TBL] [Abstract][Full Text] [Related]
27. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Zhukovsky EA; Robinson PR; Oprian DD Science; 1991 Feb; 251(4993):558-60. PubMed ID: 1990431 [TBL] [Abstract][Full Text] [Related]
28. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. Lee RH; Ting TD; Lieberman BS; Tobias DE; Lolley RN; Ho YK J Biol Chem; 1992 Dec; 267(35):25104-12. PubMed ID: 1334080 [TBL] [Abstract][Full Text] [Related]
29. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Cai K; Itoh Y; Khorana HG Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237 [TBL] [Abstract][Full Text] [Related]
30. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. Zvyaga TA; Fahmy K; Sakmar TP Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654 [TBL] [Abstract][Full Text] [Related]
31. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034 [TBL] [Abstract][Full Text] [Related]
32. In vivo assembly of rhodopsin from expressed polypeptide fragments. Ridge KD; Lee SS; Yao LL Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3204-8. PubMed ID: 7724540 [TBL] [Abstract][Full Text] [Related]
33. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. Melia TJ; Cowan CW; Angleson JK; Wensel TG Biophys J; 1997 Dec; 73(6):3182-91. PubMed ID: 9414230 [TBL] [Abstract][Full Text] [Related]
34. Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin. Phillips WJ; Wong SC; Cerione RA J Biol Chem; 1992 Aug; 267(24):17040-6. PubMed ID: 1512243 [TBL] [Abstract][Full Text] [Related]
35. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin. Brabazon DM; Abdulaev NG; Marino JP; Ridge KD Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Fahmy K; Sakmar TP Biochemistry; 1993 Jul; 32(28):7229-36. PubMed ID: 8343512 [TBL] [Abstract][Full Text] [Related]
37. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Khorana HG Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1166-71. PubMed ID: 8433978 [TBL] [Abstract][Full Text] [Related]
38. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins. Majumdar S; Ramachandran S; Cerione RA J Biol Chem; 2006 Apr; 281(14):9219-26. PubMed ID: 16469737 [TBL] [Abstract][Full Text] [Related]
39. Rhodopsin controls a conformational switch on the transducin gamma subunit. Kisselev OG; Downs MA Structure; 2003 Apr; 11(4):367-73. PubMed ID: 12679015 [TBL] [Abstract][Full Text] [Related]
40. Characterization of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Mutations on the cytoplasmic surface affect transducin activation. Min KC; Zvyaga TA; Cypess AM; Sakmar TP J Biol Chem; 1993 May; 268(13):9400-4. PubMed ID: 8486634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]