These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7556469)

  • 1. Degradation of differentially oxidized alpha-crystallins in bovine lens epithelial cells.
    Huang LL; Shang F; Nowell TR; Taylor A
    Exp Eye Res; 1995 Jul; 61(1):45-54. PubMed ID: 7556469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of native and oxidized beta- and gamma-crystallin using bovine lens epithelial cell and rabbit reticulocyte extracts.
    Shang F; Huang L; Taylor A
    Curr Eye Res; 1994 Jun; 13(6):423-31. PubMed ID: 7924406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells.
    Shang F; Taylor A
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):297-303. PubMed ID: 7717989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin.
    Murakami K; Jahngen JH; Lin SW; Davies KJ; Taylor A
    Free Radic Biol Med; 1990; 8(3):217-22. PubMed ID: 2341052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for ATP and ubiquitin dependent degradation of proteins in cultured bovine lens epithelial cells.
    Jahngen-Hodge J; Laxman E; Zuliani A; Taylor A
    Exp Eye Res; 1991 Mar; 52(3):341-7. PubMed ID: 1849831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of C-terminal truncated alpha A-crystallins by the ubiquitin-proteasome pathway.
    Zhang X; Dudek EJ; Liu B; Ding L; Fernandes AF; Liang JJ; Horwitz J; Taylor A; Shang F
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4200-8. PubMed ID: 17724207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathiolation enhances the degradation of gammaC-crystallin in lens and reticulocyte lysates, partially via the ubiquitin-proteasome pathway.
    Zetterberg M; Zhang X; Taylor A; Liu B; Liang JJ; Shang F
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3467-73. PubMed ID: 16877417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions.
    Simonneau L; Hervé B; Jacquemin E; Courtois Y
    Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of lens crystallins photosensitized with tryptophan metabolites.
    Ichijima H; Iwata S
    Ophthalmic Res; 1987; 19(3):157-63. PubMed ID: 3658326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone activity in the lens.
    Augusteyn RC; Murnane L; Nicola A; Stevens A
    Clin Exp Optom; 2002 Mar; 85(2):83-90. PubMed ID: 11952403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the ubiquitin conjugation system from bovine eye lens.
    Murakami K; Jahngen JH; Taylor A
    Curr Eye Res; 1988 Aug; 7(8):831-5. PubMed ID: 2846235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP-dependent phosphorylation of bovine lens alpha-crystallin.
    Spector A; Chiesa R; Sredy J; Garner W
    Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4712-6. PubMed ID: 2991889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of crystallin fragments in cell-free extracts of bovine lens: effects of ageing and oxygen free-radicals.
    Hipkiss AR; Carmichael PL; Zimmermann B
    Acta Biol Hung; 1991; 42(1-3):243-63. PubMed ID: 1844313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent.
    Horwitz J; Emmons T; Takemoto L
    Curr Eye Res; 1992 Aug; 11(8):817-22. PubMed ID: 1424725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Crystallin polypeptides in developing chicken lens cells.
    de Maria A; Arruti C
    Exp Eye Res; 1995 Aug; 61(2):181-7. PubMed ID: 7556482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in proteolysis of aberrant crystallin in bovine lens cell-free preparations.
    Carmichael PL; Hipkiss AR
    Mech Ageing Dev; 1989 Oct; 50(1):37-48. PubMed ID: 2630828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High capacity binding of alpha crystallins to various bovine lens membrane preparations.
    Cenedella RJ; Chandrasekher G
    Curr Eye Res; 1993 Nov; 12(11):1025-38. PubMed ID: 8306713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitin-dependent pathway is up-regulated in differentiating lens cells.
    Shang F; Gong X; McAvoy JW; Chamberlain C; Nowell TR; Taylor A
    Exp Eye Res; 1999 Feb; 68(2):179-92. PubMed ID: 10068483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification.
    Satish Kumar M; Mrudula T; Mitra N; Bhanuprakash Reddy G
    Exp Eye Res; 2004 Oct; 79(4):577-83. PubMed ID: 15381041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.