These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7556493)

  • 1. Biochemical evidence for adhesion-promoting role of major intrinsic protein isolated from both normal and cataractous human lenses.
    Michea LF; Andrinolo D; Ceppi H; Lagos N
    Exp Eye Res; 1995 Sep; 61(3):293-301. PubMed ID: 7556493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lens major intrinsic protein (MIP) promotes adhesion when reconstituted into large unilamellar liposomes.
    Michea LF; de la Fuente M; Lagos N
    Biochemistry; 1994 Jun; 33(24):7663-9. PubMed ID: 8011633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of MIP26 from single human lenses into artificial membranes. I. Differences in pH sensitivity of cataractous vs. normal human lens fiber cell proteins.
    Gooden MM; Takemoto LJ; Rintoul DA
    Curr Eye Res; 1985 Nov; 4(11):1107-15. PubMed ID: 3907982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications to rat lens major intrinsic protein in selenite-induced cataract.
    Schey KL; Fowler JG; Shearer TR; David L
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purified lens junctional protein forms channels in planar lipid films.
    Zampighi GA; Hall JE; Kreman M
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8468-72. PubMed ID: 2417221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent change of major intrinsic polypeptide (MIP26K) of lens membrane during human senile cataractogenesis.
    Takemoto L; Takehana M
    Biochem Biophys Res Commun; 1986 Mar; 135(3):965-71. PubMed ID: 2421726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid composition of lens plasma membrane fractions enriched in fiber junctions.
    Fleschner CR; Cenedella RJ
    J Lipid Res; 1991 Jan; 32(1):45-53. PubMed ID: 2010693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis of MP26 in lens fiber plasma membranes of the U18666A-induced cataract in rats.
    Alcala J; Cenedella RJ; Katar M
    Curr Eye Res; 1985 Sep; 4(9):1001-5. PubMed ID: 3905265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change of water-soluble-protein, urea-soluble-protein and membrane intrinsic protein in human senile cataract.
    Zhao H; Hu S; Ren X; Yang J; Sun L
    Yan Ke Xue Bao; 1995 Sep; 11(3):124-7. PubMed ID: 8758837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycation of lens MIP26 affects the permeability in reconstituted liposomes.
    Swamy MS; Abraham EC
    Biochem Biophys Res Commun; 1992 Jul; 186(2):632-8. PubMed ID: 1497652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major intrinsic polypeptide (MIP26K) of the lens membrane: covalent change in an internal sequence during human senile cataractogenesis.
    Takemoto L; Smith J; Kodama T
    Biochem Biophys Res Commun; 1987 Feb; 142(3):761-6. PubMed ID: 3827901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers.
    Dunia I; Manenti S; Rousselet A; Benedetti EL
    J Cell Biol; 1987 Oct; 105(4):1679-89. PubMed ID: 2444601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses.
    Boyle DL; Takemoto LJ
    Exp Eye Res; 1999 Jan; 68(1):41-9. PubMed ID: 9986740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid differentiation in MP26 junction enriched membranes of bovine lens fiber cells.
    Baumann CG; Malewicz B; Anderson WH; Lampe PD; Johnson RG; Baumann WJ
    Biochim Biophys Acta; 1996 Sep; 1303(2):145-53. PubMed ID: 8856044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.