BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7556494)

  • 1. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis.
    Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK
    Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium homeostasis of isolated single cortical fibers of rat lens.
    Srivastava SK; Wang LF; Ansari NH; Bhatnagar A
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells.
    Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens.
    Wang LF; Dhir P; Bhatnagar A; Srivastava SK
    Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells.
    Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization.
    Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering and morphology of cataract formation in transgenic mice containing the HIV-1 protease linked to the lens alpha A-crystallin promoter.
    Bettelheim FA; Churchill AC; Siew EL; Tumminia SJ; Russell P
    Exp Eye Res; 1997 May; 64(5):667-74. PubMed ID: 9245895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquefaction of cortical tissue in diabetic and galactosemic rat lenses defined by confocal laser scanning microscopy.
    Bond J; Green C; Donaldson P; Kistler J
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1557-65. PubMed ID: 8675398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats.
    Kim CS; Kim J; Lee YM; Sohn E; Jo K; Kim JS
    Arch Pharm Res; 2011 May; 34(5):847-52. PubMed ID: 21656371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A distinct membrane current in rat lens fiber cells isolated under calcium-free conditions.
    Eckert R; Donaldson P; Goldie K; Kistler J
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1280-5. PubMed ID: 9620092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and cell volume changes in the rat lens during the formation of radiation cataracts.
    Zintz C; Beebe DC
    Exp Eye Res; 1986 Jan; 42(1):43-54. PubMed ID: 3956604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling cortical cataractogenesis: VI. Induction by glucose in vitro or in diabetic rats: prevention and reversal by glutathione.
    Ross WM; Creighton MO; Trevithick JR; Stewart-DeHaan PJ; Sanwal M
    Exp Eye Res; 1983 Dec; 37(6):559-73. PubMed ID: 6662206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats.
    Ramana KV; Chandra D; Wills NK; Bhatnagar A; Srivastava SK
    J Diabetes Complications; 2004; 18(3):177-82. PubMed ID: 15145331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of damage in the lens after in vivo close to threshold exposure to UV-B radiation: cytomorphological study of apoptosis.
    Galichanin K; Löfgren S; Bergmanson J; Söderberg P
    Exp Eye Res; 2010 Sep; 91(3):369-77. PubMed ID: 20599969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering parameters of rat lenses with calcium-induced cataracts.
    Siew EL; Bettelheim FA
    Exp Eye Res; 1996 Mar; 62(3):265-70. PubMed ID: 8690036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precataractous changes affect lens transparency in the selenite cataract.
    Hess JL; Mitton KP; Bunce GE
    Ophthalmic Res; 1996; 28 Suppl 2():45-53. PubMed ID: 8883089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide levels in human lens: regional distribution in different forms of senile cataract.
    Deussen A; Pau H
    Exp Eye Res; 1989 Jan; 48(1):37-47. PubMed ID: 2920783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.