These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7556494)
1. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis. Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494 [TBL] [Abstract][Full Text] [Related]
2. Calcium homeostasis of isolated single cortical fibers of rat lens. Srivastava SK; Wang LF; Ansari NH; Bhatnagar A Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells. Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876 [TBL] [Abstract][Full Text] [Related]
4. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens. Wang LF; Dhir P; Bhatnagar A; Srivastava SK Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429 [TBL] [Abstract][Full Text] [Related]
6. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells. Wang L; Christensen BN; Bhatnagar A; Srivastava SK Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867 [TBL] [Abstract][Full Text] [Related]
7. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization. Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211 [TBL] [Abstract][Full Text] [Related]
8. Light scattering and morphology of cataract formation in transgenic mice containing the HIV-1 protease linked to the lens alpha A-crystallin promoter. Bettelheim FA; Churchill AC; Siew EL; Tumminia SJ; Russell P Exp Eye Res; 1997 May; 64(5):667-74. PubMed ID: 9245895 [TBL] [Abstract][Full Text] [Related]
9. Liquefaction of cortical tissue in diabetic and galactosemic rat lenses defined by confocal laser scanning microscopy. Bond J; Green C; Donaldson P; Kistler J Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1557-65. PubMed ID: 8675398 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Kim CS; Kim J; Lee YM; Sohn E; Jo K; Kim JS Arch Pharm Res; 2011 May; 34(5):847-52. PubMed ID: 21656371 [TBL] [Abstract][Full Text] [Related]
11. A distinct membrane current in rat lens fiber cells isolated under calcium-free conditions. Eckert R; Donaldson P; Goldie K; Kistler J Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1280-5. PubMed ID: 9620092 [TBL] [Abstract][Full Text] [Related]
12. Morphological and cell volume changes in the rat lens during the formation of radiation cataracts. Zintz C; Beebe DC Exp Eye Res; 1986 Jan; 42(1):43-54. PubMed ID: 3956604 [TBL] [Abstract][Full Text] [Related]
13. Modelling cortical cataractogenesis: VI. Induction by glucose in vitro or in diabetic rats: prevention and reversal by glutathione. Ross WM; Creighton MO; Trevithick JR; Stewart-DeHaan PJ; Sanwal M Exp Eye Res; 1983 Dec; 37(6):559-73. PubMed ID: 6662206 [TBL] [Abstract][Full Text] [Related]
14. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats. Ramana KV; Chandra D; Wills NK; Bhatnagar A; Srivastava SK J Diabetes Complications; 2004; 18(3):177-82. PubMed ID: 15145331 [TBL] [Abstract][Full Text] [Related]
16. Evolution of damage in the lens after in vivo close to threshold exposure to UV-B radiation: cytomorphological study of apoptosis. Galichanin K; Löfgren S; Bergmanson J; Söderberg P Exp Eye Res; 2010 Sep; 91(3):369-77. PubMed ID: 20599969 [TBL] [Abstract][Full Text] [Related]
17. Light scattering parameters of rat lenses with calcium-induced cataracts. Siew EL; Bettelheim FA Exp Eye Res; 1996 Mar; 62(3):265-70. PubMed ID: 8690036 [TBL] [Abstract][Full Text] [Related]
18. Precataractous changes affect lens transparency in the selenite cataract. Hess JL; Mitton KP; Bunce GE Ophthalmic Res; 1996; 28 Suppl 2():45-53. PubMed ID: 8883089 [TBL] [Abstract][Full Text] [Related]
19. Development and repair of cataract induced by ultraviolet radiation. Michael R Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682 [TBL] [Abstract][Full Text] [Related]
20. Nucleotide levels in human lens: regional distribution in different forms of senile cataract. Deussen A; Pau H Exp Eye Res; 1989 Jan; 48(1):37-47. PubMed ID: 2920783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]