BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7556935)

  • 1. Formation of the female pronucleus and reorganization and disassembly of the first interphase cytoskeleton in the egg of the glossiphoniid leech Theromyzon rude.
    Fernandez J; Olea N
    Dev Biol; 1995 Oct; 171(2):541-53. PubMed ID: 7556935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of the male pronucleus, organization of the first interphase monaster, and establishment of a perinuclear plasm domain in the egg of the glossiphoniid leech Theromyzon rude.
    Fernández J; Olea N; Téllez V
    Dev Biol; 1994 Jul; 164(1):111-22. PubMed ID: 8026616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of polar cytoplasmic domains (teloplasms) in the leech egg is a three-step segregation process.
    Fernandez J; Olea N; Ubilla A; Cantillana V
    Int J Dev Biol; 1998 Mar; 42(2):149-62. PubMed ID: 9551860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex dynamic network of microtubule and microfilament cytasters of the leech zygote.
    Cantillana V; Urrutia M; Ubilla A; Fernández J
    Dev Biol; 2000 Dec; 228(1):136-49. PubMed ID: 11087633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal and video imaging of cytoskeleton dynamics in the leech zygote.
    Fernández J; Toro J; Ubilla A
    Dev Biol; 2004 Jul; 271(1):59-74. PubMed ID: 15196950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and development of the egg of the glossiphoniid leech Theromyzon rude: reorganization of the fertilized egg during completion of the first meiotic division.
    Fernández J; Olea N; Téllez V; Matte C
    Dev Biol; 1990 Jan; 137(1):142-54. PubMed ID: 2295361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments.
    Fernández J; Cantillana V; Ubilla A
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):214-30. PubMed ID: 12211103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and localization of cytoplasmic domains in leech and ascidian zygotes.
    Fernández J; Roegiers F; Cantillana V; Sardet C
    Int J Dev Biol; 1998 Nov; 42(8):1075-84. PubMed ID: 9879704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ooplasmic redistribution in Tubifex eggs with selectively impaired cortical actin cytoskeleton.
    Shimizu T
    Dev Biol; 1996 Nov; 180(1):54-62. PubMed ID: 8948574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of some cytoskeleton inhibitors on ooplasmic segregation in the Nereis virens egg.
    Dondua AK; Kostyuchenko RP; Fedorova ZE
    Int J Dev Biol; 1997 Dec; 41(6):853-8. PubMed ID: 9449461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of cytoplasm in the zebrafish oocyte and egg during early steps of ooplasmic segregation.
    Fernández J; Valladares M; Fuentes R; Ubilla A
    Dev Dyn; 2006 Mar; 235(3):656-71. PubMed ID: 16425221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules.
    Krendel M; Sgourdas G; Bonder EM
    Cell Motil Cytoskeleton; 1998; 40(4):368-78. PubMed ID: 9712266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoskeleton and chromatin reorganization in horse oocytes following intracytoplasmic sperm injection: patterns associated with normal and defective fertilization.
    Tremoleda JL; Van Haeften T; Stout TA; Colenbrander B; Bevers MM
    Biol Reprod; 2003 Jul; 69(1):186-94. PubMed ID: 12646492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of polar body formation by cytochalasin B and fusion of the resulting plural female pronuclei in eggs of the starfish, Asterina pectinifera.
    Tsukahara J; Ishikawa M
    Eur J Cell Biol; 1980 Aug; 21(3):288-95. PubMed ID: 7449771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Causal mechanisms of nuclear movement and division during early cleavage stages in the egg of a gall midge,Wachtliella persicariae L.].
    Wolf R
    Wilhelm Roux Arch Entwickl Mech Org; 1973 Mar; 172(1):28-57. PubMed ID: 28304740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeletal mechanisms of ooplasmic segregation in annelid eggs.
    Shimizu T
    Int J Dev Biol; 1999 Jan; 43(1):11-8. PubMed ID: 10213078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer.
    Goud AP; Goud PT; Van Oostveldt P; Diamond MP; Dhont M
    Fertil Steril; 2004 Feb; 81(2):323-31. PubMed ID: 14967368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics.
    Fechter J; Schöneberg A; Schatten G
    Cell Motil Cytoskeleton; 1996; 35(4):281-8. PubMed ID: 8956000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.