These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7557317)

  • 1. The construction of a reporter system and use for the investigation of Clostridium perfringens gene expression.
    Bullifent HL; Moir A; Titball RW
    FEMS Microbiol Lett; 1995 Aug; 131(1):99-105. PubMed ID: 7557317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Clostridium perfringens vector for the selection of promoters.
    Matsushita C; Matsushita O; Koyama M; Okabe A
    Plasmid; 1994 May; 31(3):317-9. PubMed ID: 8058826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid.
    Sloan J; Warner TA; Scott PT; Bannam TL; Berryman DI; Rood JI
    Plasmid; 1992 May; 27(3):207-19. PubMed ID: 1513878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens.
    Steffen C; Matzura H
    Gene; 1989 Feb; 75(2):349-54. PubMed ID: 2541053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterization of a xylose-inducible gene expression system for Clostridium perfringens.
    Nariya H; Miyata S; Kuwahara T; Okabe A
    Appl Environ Microbiol; 2011 Dec; 77(23):8439-41. PubMed ID: 21965407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria.
    Bannam TL; Rood JI
    Antimicrob Agents Chemother; 1991 Mar; 35(3):471-6. PubMed ID: 2039197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens.
    Hartman AH; Liu H; Melville SB
    Appl Environ Microbiol; 2011 Jan; 77(2):471-8. PubMed ID: 21097603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence (lux) expression in the anaerobe Clostridium perfringens.
    Phillips-Jones MK
    FEMS Microbiol Lett; 1993 Feb; 106(3):265-70. PubMed ID: 8454191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an Escherichia coli-Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens.
    Kim AY; Blaschek HP
    Appl Environ Microbiol; 1989 Feb; 55(2):360-5. PubMed ID: 2541660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel type of DNA curvature present in a Clostridium perfringens ferredoxin gene: characterization and role in gene expression.
    Kaji M; Matsushita O; Tamai E; Miyata S; Taniguchi Y; Shimamoto S; Katayama S; Morita S; Okabe A
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3083-3091. PubMed ID: 14600220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a lux reporter system for monitoring rapid changes in alpha-toxin gene expression in Clostridium perfringens during growth.
    Phillips-Jones MK
    FEMS Microbiol Lett; 2000 Jul; 188(1):29-33. PubMed ID: 10867230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13.
    Ohtani K; Kawsar HI; Okumura K; Hayashi H; Shimizu T
    FEMS Microbiol Lett; 2003 May; 222(1):137-41. PubMed ID: 12757957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens.
    Ba-Thein W; Lyristis M; Ohtani K; Nisbet IT; Hayashi H; Rood JI; Shimizu T
    J Bacteriol; 1996 May; 178(9):2514-20. PubMed ID: 8626316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression from the Clostridium perfringens cpe promoter in C. perfringens and Bacillus subtilis.
    Melville SB; Labbe R; Sonenshein AL
    Infect Immun; 1994 Dec; 62(12):5550-8. PubMed ID: 7960138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the alpha-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription.
    Katayama S; Matsushita O; Minami J; Mizobuchi S; Okabe A
    Infect Immun; 1993 Feb; 61(2):457-63. PubMed ID: 8423073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants.
    Bannam TL; Rood JI
    Plasmid; 1993 May; 29(3):233-5. PubMed ID: 8356117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule.
    Bannam TL; Crellin PK; Rood JI
    Mol Microbiol; 1995 May; 16(3):535-51. PubMed ID: 7565113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and sequencing of a phospholipase C gene of Clostridium perfringens.
    Okabe A; Shimizu T; Hayashi H
    Biochem Biophys Res Commun; 1989 Apr; 160(1):33-9. PubMed ID: 2540749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase.
    Stoss O; Mogk A; Schumann W
    FEMS Microbiol Lett; 1997 May; 150(1):49-54. PubMed ID: 9163905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of shuttle vector plasmid between Clostridium acetobutylicum and Escherichia coli.
    Yoshino S; Yoshino T; Hara S; Ogata S; Hayashida S
    Agric Biol Chem; 1990 Feb; 54(2):437-41. PubMed ID: 1368508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.