These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 7557391)
1. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Levchenko I; Luo L; Baker TA Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391 [TBL] [Abstract][Full Text] [Related]
2. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. Jones JM; Welty DJ; Nakai H J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104 [TBL] [Abstract][Full Text] [Related]
3. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Levchenko I; Yamauchi M; Baker TA Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582 [TBL] [Abstract][Full Text] [Related]
4. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. Kruklitis R; Welty DJ; Nakai H EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314 [TBL] [Abstract][Full Text] [Related]
5. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994 [TBL] [Abstract][Full Text] [Related]
6. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Burton BM; Baker TA Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828 [TBL] [Abstract][Full Text] [Related]
7. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657 [TBL] [Abstract][Full Text] [Related]
8. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280 [TBL] [Abstract][Full Text] [Related]
9. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Abdelhakim AH; Oakes EC; Sauer RT; Baker TA Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100 [TBL] [Abstract][Full Text] [Related]
12. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. Osterås M; Stotz A; Schmid Nuoffer S; Jenal U J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004 [TBL] [Abstract][Full Text] [Related]
13. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Burton BM; Williams TL; Baker TA Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX. Ling L; Montaño SP; Sauer RT; Rice PA; Baker TA J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169 [TBL] [Abstract][Full Text] [Related]
15. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770 [TBL] [Abstract][Full Text] [Related]
16. DNA repair by the cryptic endonuclease activity of Mu transposase. Choi W; Harshey RM Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799 [TBL] [Abstract][Full Text] [Related]
17. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli. Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059 [TBL] [Abstract][Full Text] [Related]
18. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567 [TBL] [Abstract][Full Text] [Related]
19. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Schelin J; Lindmark F; Clarke AK Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312 [TBL] [Abstract][Full Text] [Related]
20. Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication. Nakai H; Kruklitis R J Biol Chem; 1995 Aug; 270(33):19591-8. PubMed ID: 7642646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]