BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 7557391)

  • 1. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition.
    Jones JM; Welty DJ; Nakai H
    J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis.
    Kruklitis R; Welty DJ; Nakai H
    EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
    Burton BM; Baker TA
    Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein.
    Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A
    Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX.
    Abdelhakim AH; Oakes EC; Sauer RT; Baker TA
    Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex.
    Burton BM; Williams TL; Baker TA
    Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; Montaño SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities.
    Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR
    J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA repair by the cryptic endonuclease activity of Mu transposase.
    Choi W; Harshey RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus.
    Schelin J; Lindmark F; Clarke AK
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication.
    Nakai H; Kruklitis R
    J Biol Chem; 1995 Aug; 270(33):19591-8. PubMed ID: 7642646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.