BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 7557391)

  • 21. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
    Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z
    Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
    Zhou Y; Gottesman S; Hoskins JR; Maurizi MR; Wickner S
    Genes Dev; 2001 Mar; 15(5):627-37. PubMed ID: 11238382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone.
    Banecki B; Wawrzynow A; Puzewicz J; Georgopoulos C; Zylicz M
    J Biol Chem; 2001 Jun; 276(22):18843-8. PubMed ID: 11278349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure of the dimeric zinc binding domain of the chaperone ClpX.
    Donaldson LW; Wojtyra U; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48991-6. PubMed ID: 14525985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning and characterization of a mouse homolog of bacterial ClpX, a novel mammalian class II member of the Hsp100/Clp chaperone family.
    Santagata S; Bhattacharyya D; Wang FH; Singha N; Hodtsev A; Spanopoulou E
    J Biol Chem; 1999 Jun; 274(23):16311-9. PubMed ID: 10347188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Derepression of bacteriophage mu transposition functions by truncated forms of the immunity repressor.
    O'Handley D; Nakai H
    J Mol Biol; 2002 Sep; 322(2):311-24. PubMed ID: 12217693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits.
    Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA
    Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trans-targeting of the phage Mu repressor is promoted by conformational changes that expose its ClpX recognition determinant.
    Marshall-Batty KR; Nakai H
    J Biol Chem; 2003 Jan; 278(3):1612-7. PubMed ID: 12424242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
    Stephani K; Weichart D; Hengge R
    Mol Microbiol; 2003 Sep; 49(6):1605-14. PubMed ID: 12950924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals.
    Flynn JM; Neher SB; Kim YI; Sauer RT; Baker TA
    Mol Cell; 2003 Mar; 11(3):671-83. PubMed ID: 12667450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of residues in the Mu transposase essential for catalysis.
    Baker TA; Luo L
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.