These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 7557391)

  • 21. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
    Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z
    Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
    Zhou Y; Gottesman S; Hoskins JR; Maurizi MR; Wickner S
    Genes Dev; 2001 Mar; 15(5):627-37. PubMed ID: 11238382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone.
    Banecki B; Wawrzynow A; Puzewicz J; Georgopoulos C; Zylicz M
    J Biol Chem; 2001 Jun; 276(22):18843-8. PubMed ID: 11278349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure of the dimeric zinc binding domain of the chaperone ClpX.
    Donaldson LW; Wojtyra U; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48991-6. PubMed ID: 14525985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning and characterization of a mouse homolog of bacterial ClpX, a novel mammalian class II member of the Hsp100/Clp chaperone family.
    Santagata S; Bhattacharyya D; Wang FH; Singha N; Hodtsev A; Spanopoulou E
    J Biol Chem; 1999 Jun; 274(23):16311-9. PubMed ID: 10347188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Derepression of bacteriophage mu transposition functions by truncated forms of the immunity repressor.
    O'Handley D; Nakai H
    J Mol Biol; 2002 Sep; 322(2):311-24. PubMed ID: 12217693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits.
    Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA
    Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trans-targeting of the phage Mu repressor is promoted by conformational changes that expose its ClpX recognition determinant.
    Marshall-Batty KR; Nakai H
    J Biol Chem; 2003 Jan; 278(3):1612-7. PubMed ID: 12424242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
    Stephani K; Weichart D; Hengge R
    Mol Microbiol; 2003 Sep; 49(6):1605-14. PubMed ID: 12950924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals.
    Flynn JM; Neher SB; Kim YI; Sauer RT; Baker TA
    Mol Cell; 2003 Mar; 11(3):671-83. PubMed ID: 12667450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of residues in the Mu transposase essential for catalysis.
    Baker TA; Luo L
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.