These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7558064)

  • 1. Predicting patterns of epicardial potentials during ventricular fibrillation.
    Bayly PV; Johnson EE; Wolf PD; Smith WM; Ideker RE
    IEEE Trans Biomed Eng; 1995 Sep; 42(9):898-907. PubMed ID: 7558064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial organization, predictability, and determinism in ventricular fibrillation.
    Bayly PV; KenKnight BH; Rogers JM; Johnson EE; Ideker RE; Smith WM
    Chaos; 1998 Mar; 8(1):103-115. PubMed ID: 12779714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional analysis of ventricular fibrillation in the guinea pig.
    Gopalakrishnan M; Malkin RA
    J Electrocardiol; 2003 Apr; 36(2):147-53. PubMed ID: 12764697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient electrode spacing for examining spatial organization during ventricular fibrillation.
    Bayly PV; Johnson EE; Idriss SF; Ideker RE; Smith WM
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1060-6. PubMed ID: 8294131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation.
    Evans FG; Gray RA
    J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoregressive modeling of epicardial electrograms during ventricular fibrillation.
    Throne R; Wilber D; Olshansky B; Blakeman B; Arzbaecher R
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):379-86. PubMed ID: 8375874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for multiple mechanisms in human ventricular fibrillation.
    Nash MP; Mourad A; Clayton RH; Sutton PM; Bradley CP; Hayward M; Paterson DJ; Taggart P
    Circulation; 2006 Aug; 114(6):536-42. PubMed ID: 16880326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A frequency domain analysis of spatial organization of epicardial maps.
    Sih HJ; Sahakian AV; Arentzen CE; Swiryn S
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):718-27. PubMed ID: 7622155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Order in disorder: effect of barium on ventricular fibrillation.
    Dorian P; Penkoske PA; Witkowski FX
    Can J Cardiol; 1996 Apr; 12(4):399-406. PubMed ID: 8608459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional variation in capture of fibrillating swine left ventricle during electrical stimulation.
    Nanthakumar K; Johnson PL; Huang J; Killingsworth CR; Rollins DL; McElderry HT; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 2005 Apr; 16(4):425-32. PubMed ID: 15828889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained reentry in the left ventricle of fibrillating pig hearts.
    Rogers JM; Huang J; Melnick SB; Ideker RE
    Circ Res; 2003 Mar; 92(5):539-45. PubMed ID: 12600882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-frequency representation of epicardial electrograms during ventricular fibrillation.
    Moghe SA; Qu F; Leonelli FM; Patwardhan AR
    Biomed Sci Instrum; 2000; 36():45-50. PubMed ID: 10834207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of ventricular fibrillation in the human heart: experiments and models.
    ten Tusscher KH; Mourad A; Nash MP; Clayton RH; Bradley CP; Paterson DJ; Hren R; Hayward M; Panfilov AV; Taggart P
    Exp Physiol; 2009 May; 94(5):553-62. PubMed ID: 19168541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the ventricular fibrillation duration by autoregressive modeling.
    Baykal A; Ranjan R; Thakor NV
    IEEE Trans Biomed Eng; 1997 May; 44(5):349-56. PubMed ID: 9125819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal frequency analysis of ventricular fibrillation in explanted human hearts.
    Umapathy K; Massé S; Sevaptsidis E; Asta J; Krishnan SS; Nanthakumar K
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):328-35. PubMed ID: 19272907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimated global transmural distribution of activation rate and conduction block during porcine and canine ventricular fibrillation.
    Newton JC; Smith WM; Ideker RE
    Circ Res; 2004 Apr; 94(6):836-42. PubMed ID: 14764451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of ventricular fibrillation activation patterns induced by local stretching.
    Chorro FJ; Trapero I; Guerrero J; Such LM; Canoves J; Mainar L; Ferrero A; Blasco E; Sanchis J; Millet J; Tormos A; Bodí V; Alberola A
    J Cardiovasc Electrophysiol; 2005 Oct; 16(10):1087-96. PubMed ID: 16191119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the organization of epicardial activation patterns during ventricular fibrillation.
    Huang J; Rogers JM; Kenknight BH; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1291-1304. PubMed ID: 9869529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time averaged spatial distribution of epicardial dominant frequencies during ventricular fibrillation.
    Qu F; Moghe SA; Leonelli FM; Patwardhan AR
    Biomed Sci Instrum; 2000; 36():379-83. PubMed ID: 10834262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of ventricular fibrillation in the human heart.
    Ten Tusscher KH; Hren R; Panfilov AV
    Circ Res; 2007 Jun; 100(12):e87-101. PubMed ID: 17540975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.