These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7558585)

  • 1. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides.
    Brennan TV; Clarke S
    Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric.
    Brennan TV; Clarke S
    Protein Sci; 1993 Mar; 2(3):331-8. PubMed ID: 8453372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deuteration protects asparagine residues against racemization.
    Lowenson JD; Shmanai VV; Shklyaruck D; Clarke SG; Shchepinov MS
    Amino Acids; 2016 Sep; 48(9):2189-96. PubMed ID: 27169868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a novel racemization process of an asparaginyl residue in mouse lysozyme under physiological conditions.
    Ueno K; Ueda T; Sakai K; Abe Y; Hamasaki N; Okamoto M; Imoto T
    Cell Mol Life Sci; 2005 Jan; 62(2):199-205. PubMed ID: 15666091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability and degradation pathway of recombinant human parathyroid hormone: deamidation of asparaginyl residue and peptide bond cleavage at aspartyl and asparaginyl residues.
    Nabuchi Y; Fujiwara E; Kuboniwa H; Asoh Y; Ushio H
    Pharm Res; 1997 Dec; 14(12):1685-90. PubMed ID: 9453054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.
    Takahashi O; Manabe N; Kirikoshi R
    Molecules; 2016 Mar; 21(3):327. PubMed ID: 27005609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
    Wakankar AA; Borchardt RT
    J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.
    Tyler-Cross R; Schirch V
    J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Racemization of an asparagine residue during peptide deamidation.
    Li B; Borchardt RT; Topp EM; VanderVelde D; Schowen RL
    J Am Chem Soc; 2003 Sep; 125(38):11486-7. PubMed ID: 13129337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate.
    Voorter CE; de Haard-Hoekman WA; van den Oetelaar PJ; Bloemendal H; de Jong WW
    J Biol Chem; 1988 Dec; 263(35):19020-3. PubMed ID: 3198609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.