These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7559163)

  • 1. OHC response recruitment and its correlation with loudness recruitment.
    Zhang M; Zwislocki JJ
    Hear Res; 1995 May; 85(1-2):1-10. PubMed ID: 7559163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cochlear responses after sound exposure.
    Szymko YM; Zwislocki JJ; Hertig L
    Hear Res; 1997 Aug; 110(1-2):164-78. PubMed ID: 9282899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of white noise exposure on nonlinearities of outer hair cell].
    Sun W; Li X; Jiang S
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Apr; 32(2):88-91. PubMed ID: 10743135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Otoacoustic emissions and recruitment].
    Konopka W; Olszewski J
    Otolaryngol Pol; 2005; 59(5):731-6. PubMed ID: 16471192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala.
    Radziwon K; Auerbach BD; Ding D; Liu X; Chen GD; Salvi R
    Neuroscience; 2019 Dec; 422():212-227. PubMed ID: 31669363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis.
    Knipper M; Van Dijk P; Nunes I; Rüttiger L; Zimmermann U
    Prog Neurobiol; 2013 Dec; 111():17-33. PubMed ID: 24012803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment.
    Preyer S; Gummer AW
    Audiol Neurootol; 1996; 1(1):3-11. PubMed ID: 9390786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocochleography and experimentally induced loudness recruitment.
    Pugh JE; Moody DB; Anderson DJ
    Arch Otorhinolaryngol; 1979; 224(3-4):241-55. PubMed ID: 526187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity-dependent peak shift in cochlear transfer functions at the cellular level, its elimination by sound exposure, and its possible underlying mechanisms.
    Zhang M; Zwislocki JJ
    Hear Res; 1996 Jul; 96(1-2):46-58. PubMed ID: 8817306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling.
    Jürgens T; Kollmeier B; Brand T; Ewert SD
    Hear Res; 2011 Oct; 280(1-2):177-91. PubMed ID: 21669269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli.
    Avan P; Bonfils P; Gilain L; Mom T
    J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment.
    Cai S; Ma WL; Young ED
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):5-22. PubMed ID: 18855070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP).
    Manohar S; Spoth J; Radziwon K; Auerbach BD; Salvi R
    Hear Res; 2017 Sep; 353():197-203. PubMed ID: 28705607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss.
    Vlajkovic SM; Ambepitiya K; Barclay M; Boison D; Housley GD; Thorne PR
    Hear Res; 2017 Mar; 345():43-51. PubMed ID: 28034618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.