BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 7559325)

  • 1. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE).
    Yuan G; Wong SL
    J Bacteriol; 1995 Oct; 177(19):5427-33. PubMed ID: 7559325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis.
    Tan M; Wong B; Engel JN
    J Bacteriol; 1996 Dec; 178(23):6983-90. PubMed ID: 8955323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis.
    Schulz A; Tzschaschel B; Schumann W
    Mol Microbiol; 1995 Feb; 15(3):421-9. PubMed ID: 7540247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat.
    Segal G; Ron EZ
    J Bacteriol; 1996 Jun; 178(12):3634-40. PubMed ID: 8655565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of heat-shock response in bacteria.
    Segal G; Ron EZ
    Ann N Y Acad Sci; 1998 Jun; 851():147-51. PubMed ID: 9668617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-shock and general stress response in Bacillus subtilis.
    Hecker M; Schumann W; Völker U
    Mol Microbiol; 1996 Feb; 19(3):417-28. PubMed ID: 8830234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon.
    Mogk A; Völker A; Engelmann S; Hecker M; Schumann W; Völker U
    J Bacteriol; 1998 Jun; 180(11):2895-900. PubMed ID: 9603878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes.
    Narberhaus F; Weiglhofer W; Fischer HM; Hennecke H
    J Bacteriol; 1996 Sep; 178(18):5337-46. PubMed ID: 8808920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of divIB of Bacillus subtilis during vegetative growth.
    Harry EJ; Rowland SL; Malo MS; Wake RG
    J Bacteriol; 1994 Feb; 176(4):1172-9. PubMed ID: 8106328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of a proper helical structure in the promoter-10 binding region to Bacillus subtilis sigma A structure and function.
    Liao CT; Wen YD; Wang WH; Tsai SC; Doi RH; Chang BY
    J Biochem; 1997 Nov; 122(5):911-7. PubMed ID: 9443805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, sequencing, and transcriptional analysis of the gene coding for the vegetative sigma factor of Agrobacterium tumefaciens.
    Segal G; Ron EZ
    J Bacteriol; 1993 May; 175(10):3026-30. PubMed ID: 8491721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter.
    Wang Y; deHaseth PL
    J Bacteriol; 2003 Oct; 185(19):5800-6. PubMed ID: 13129951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.
    Kourennaia OV; Tsujikawa L; Dehaseth PL
    J Bacteriol; 2005 Oct; 187(19):6762-9. PubMed ID: 16166539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function.
    Reischl S; Wiegert T; Schumann W
    J Biol Chem; 2002 Sep; 277(36):32659-67. PubMed ID: 12082092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
    Wilson AC; Tan M
    J Bacteriol; 2004 Jun; 186(11):3384-91. PubMed ID: 15150223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.