These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7559337)

  • 1. Inhibition of the release factor-dependent termination reaction on ribosomes by DnaJ and the N-terminal peptide of rhodanese.
    Kudlicki W; Odom OW; Merrill G; Kramer G; Hardesty B
    J Bacteriol; 1995 Oct; 177(19):5517-22. PubMed ID: 7559337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of the N-terminal segment for DnaJ-mediated folding of rhodanese while bound to ribosomes as peptidyl-tRNA.
    Kudlicki W; Odom OW; Kramer G; Hardesty B; Merrill GA; Horowitz PM
    J Biol Chem; 1995 May; 270(18):10650-7. PubMed ID: 7738002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA.
    Kudlicki W; Odom OW; Kramer G; Hardesty B
    J Biol Chem; 1994 Jun; 269(24):16549-53. PubMed ID: 8206970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of an N-terminal rhodanese peptide to DnaJ and to ribosomes.
    Kudlicki W; Odom OW; Kramer G; Hardesty B
    J Biol Chem; 1996 Dec; 271(49):31160-5. PubMed ID: 8940114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotranslational folding of nascent proteins on Escherichia coli ribosomes.
    Hardesty B; Kudlicki W; Odom OW; Zhang T; McCarthy D; Kramer G
    Biochem Cell Biol; 1995; 73(11-12):1199-207. PubMed ID: 8722037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elongation and folding of nascent ricin chains as peptidyl-tRNA on ribosomes: the effect of amino acid deletions on these processes.
    Kudlicki W; Kitaoka Y; Odom OW; Kramer G; Hardesty B
    J Mol Biol; 1995 Sep; 252(2):203-12. PubMed ID: 7674301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal and C-terminal modifications affect folding, release from the ribosomes and stability of in vitro synthesized proteins.
    Kramer G; Kudlicki W; McCarthy D; Tsalkova T; Simmons D; Hardesty B
    Int J Biochem Cell Biol; 1999 Jan; 31(1):231-41. PubMed ID: 10216956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence.
    Kudlicki W; Odom OW; Kramer G; Hardesty B
    J Mol Biol; 1994 Dec; 244(3):319-31. PubMed ID: 7966342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a hydrophobic N-terminal probe on translational pausing of chloramphenicol acetyl transferase and rhodanese.
    Tsalkova T; Kramer G; Hardesty B
    J Mol Biol; 1999 Feb; 286(1):71-81. PubMed ID: 9931250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a chaperone-deficient system by fractionation of a prokaryotic coupled transcription/translation system.
    Kudlicki W; Mouat M; Walterscheid JP; Kramer G; Hardesty B
    Anal Biochem; 1994 Feb; 217(1):12-9. PubMed ID: 7911283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different conformations of nascent peptides on ribosomes.
    Tsalkova T; Odom OW; Kramer G; Hardesty B
    J Mol Biol; 1998 May; 278(4):713-23. PubMed ID: 9614937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome.
    Kudlicki W; Chirgwin J; Kramer G; Hardesty B
    Biochemistry; 1995 Nov; 34(44):14284-7. PubMed ID: 7578030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorophores at the N terminus of nascent chloramphenicol acetyltransferase peptides affect translation and movement through the ribosome.
    Ramachandiran V; Willms C; Kramer G; Hardesty B
    J Biol Chem; 2000 Jan; 275(3):1781-6. PubMed ID: 10636875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of translational termination signals.
    Buckingham K; Chung DG; Neilson T; Ganoza MC
    Biochim Biophys Acta; 1987 Jul; 909(2):92-8. PubMed ID: 3297159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor.
    Kramer G; Ramachandiran V; Horowitz PM; Hardesty B
    Arch Biochem Biophys; 2002 Jul; 403(1):63-70. PubMed ID: 12061803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient in vitro translational termination in Escherichia coli is constrained by the orientations of the release factor, stop signal and peptidyl-tRNA within the termination complex.
    McCaughan KK; Poole ES; Pel HJ; Mansell JB; Mannering SA; Tate WP
    Biol Chem; 1998 Jul; 379(7):857-66. PubMed ID: 9705149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific inhibition of the termination process of protein synthesis by negamycin.
    Uehara Y; Hori M; Umezawa H
    Biochim Biophys Acta; 1976 Aug; 442(2):251-62. PubMed ID: 782542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of translation termination in E. coli.
    Baggett NE; Zhang Y; Gross CA
    PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.