These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 7559342)
1. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. Persson BC; Bylund GO; Berg DE; Wikström PM J Bacteriol; 1995 Oct; 177(19):5554-60. PubMed ID: 7559342 [TBL] [Abstract][Full Text] [Related]
2. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. Byström AS; Hjalmarsson KJ; Wikström PM; Björk GR EMBO J; 1983; 2(6):899-905. PubMed ID: 6357787 [TBL] [Abstract][Full Text] [Related]
3. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. Wikström PM; Lind LK; Berg DE; Björk GR J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581 [TBL] [Abstract][Full Text] [Related]
4. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species. Byström AS; von Gabain A; Björk GR J Mol Biol; 1989 Aug; 208(4):575-86. PubMed ID: 2478711 [TBL] [Abstract][Full Text] [Related]
5. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. Bylund GO; Wipemo LC; Lundberg LA; Wikström PM J Bacteriol; 1998 Jan; 180(1):73-82. PubMed ID: 9422595 [TBL] [Abstract][Full Text] [Related]
6. A regulatory element within a gene of a ribosomal protein operon of Escherichia coli negatively controls expression by decreasing the translational efficiency. Wikström PM; Björk GR Mol Gen Genet; 1989 Nov; 219(3):381-9. PubMed ID: 2516239 [TBL] [Abstract][Full Text] [Related]
7. Noncoordinate translation-level regulation of ribosomal and nonribosomal protein genes in the Escherichia coli trmD operon. Wikström PM; Björk GR J Bacteriol; 1988 Jul; 170(7):3025-31. PubMed ID: 3290194 [TBL] [Abstract][Full Text] [Related]
8. Non-autogenous control of ribosomal protein synthesis from the trmD operon in Escherichia coli. Wikström PM; Byström AS; Björk GR J Mol Biol; 1988 Sep; 203(1):141-52. PubMed ID: 2460631 [TBL] [Abstract][Full Text] [Related]
9. The structural gene (trmD) for the tRNA(m1G)methyltransferase is part of a four polypeptide operon in Escherichia coli K-12. Byström AS; Björk GR Mol Gen Genet; 1982; 188(3):447-54. PubMed ID: 6298574 [TBL] [Abstract][Full Text] [Related]
10. A novel ribosome-associated protein is important for efficient translation in Escherichia coli. Bylund GO; Persson BC; Lundberg LA; Wikström PM J Bacteriol; 1997 Jul; 179(14):4567-74. PubMed ID: 9226267 [TBL] [Abstract][Full Text] [Related]
11. Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12. Byström AS; Björk GR Mol Gen Genet; 1982; 188(3):440-6. PubMed ID: 6298573 [TBL] [Abstract][Full Text] [Related]
12. Sequences of the Serratia marcescens rplS and trmD genes. Jin S; Benedik MJ Gene; 1994 Jul; 145(1):147-8. PubMed ID: 8045416 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary repair reveals an unexpected role of the tRNA modification m1G37 in aminoacylation. Clifton BE; Fariz MA; Uechi GI; Laurino P Nucleic Acids Res; 2021 Dec; 49(21):12467-12485. PubMed ID: 34761260 [TBL] [Abstract][Full Text] [Related]
14. Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Gutierrez JA; Crowley PJ; Cvitkovitch DG; Brady LJ; Hamilton IR; Hillman JD; Bleiweis AS Microbiology (Reading); 1999 Feb; 145 ( Pt 2)():357-366. PubMed ID: 10075418 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. Honda K; Nakamura K; Nishiguchi M; Yamane K J Bacteriol; 1993 Aug; 175(15):4885-94. PubMed ID: 8335643 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. Kremer BH; van der Kraan M; Crowley PJ; Hamilton IR; Brady LJ; Bleiweis AS J Bacteriol; 2001 Apr; 183(8):2543-52. PubMed ID: 11274114 [TBL] [Abstract][Full Text] [Related]
17. Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. White-Ziegler CA; Low DA J Bacteriol; 1992 Nov; 174(21):7003-12. PubMed ID: 1356970 [TBL] [Abstract][Full Text] [Related]
18. The GTPase activity of the Escherichia coli Ffh protein is important for normal growth. Samuelsson T; Olsson M; Wikström PM; Johansson BR Biochim Biophys Acta; 1995 Jun; 1267(2-3):83-91. PubMed ID: 7612669 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the rpmBG operon of Escherichia coli that affect ribosome assembly. Maguire BA; Wild DG J Bacteriol; 1997 Apr; 179(8):2486-93. PubMed ID: 9098043 [TBL] [Abstract][Full Text] [Related]
20. Cloning, sequencing, expression, and functional studies of a 15,000-molecular-weight Haemophilus somnus antigen similar to Escherichia coli ribosomal protein S9. Theisen M; Potter AA J Bacteriol; 1992 Jan; 174(1):17-23. PubMed ID: 1729207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]