These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
538 related articles for article (PubMed ID: 7559347)
21. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Schnetz K; Rak B Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5074-8. PubMed ID: 2195546 [TBL] [Abstract][Full Text] [Related]
22. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
23. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Wray LV; Fisher SH J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225 [TBL] [Abstract][Full Text] [Related]
25. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. el Hassouni M; Henrissat B; Chippaux M; Barras F J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212 [TBL] [Abstract][Full Text] [Related]
26. Characterization of a mannose utilization system in Bacillus subtilis. Sun T; Altenbuchner J J Bacteriol; 2010 Apr; 192(8):2128-39. PubMed ID: 20139185 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional analysis of the bglP gene from Streptococcus mutans. Cote CK; Honeyman AL BMC Microbiol; 2006 Apr; 6():37. PubMed ID: 16630357 [TBL] [Abstract][Full Text] [Related]
28. A physical and functional analysis of the newly-identified bglGPT operon of Lactobacillus plantarum. Marasco R; Salatiello I; De Felice M; Sacco M FEMS Microbiol Lett; 2000 May; 186(2):269-73. PubMed ID: 10802183 [TBL] [Abstract][Full Text] [Related]
29. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. Crutz AM; Steinmetz M J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159 [TBL] [Abstract][Full Text] [Related]
30. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. Zalieckas JM; Wray LV; Fisher SH J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782 [TBL] [Abstract][Full Text] [Related]
31. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. Debarbouille M; Arnaud M; Fouet A; Klier A; Rapoport G J Bacteriol; 1990 Jul; 172(7):3966-73. PubMed ID: 2163394 [TBL] [Abstract][Full Text] [Related]
32. Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene. Stülke J; Martin-Verstraete I; Glaser P; Rapoport G Arch Microbiol; 2001 Jun; 175(6):441-9. PubMed ID: 11491085 [TBL] [Abstract][Full Text] [Related]
33. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Fujita Y; Miwa Y; Galinier A; Deutscher J Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444 [TBL] [Abstract][Full Text] [Related]
34. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463 [TBL] [Abstract][Full Text] [Related]
35. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( Zhang Z; Zhou K; Tran D; Saier M Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163427 [TBL] [Abstract][Full Text] [Related]
36. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. Saxild HH; Andersen LN; Hammer K J Bacteriol; 1996 Jan; 178(2):424-34. PubMed ID: 8550462 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the gen locus involved in β-1,6-oligosaccharide utilization by Enterococcus faecalis. Grand M; Aubourg M; Pikis A; Thompson J; Deutscher J; Hartke A; Sauvageot N Mol Microbiol; 2019 Dec; 112(6):1744-1756. PubMed ID: 31529727 [TBL] [Abstract][Full Text] [Related]
38. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Aymerich S; Steinmetz M Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10410-4. PubMed ID: 1279678 [TBL] [Abstract][Full Text] [Related]
39. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Lindner C; Galinier A; Hecker M; Deutscher J Mol Microbiol; 1999 Feb; 31(3):995-1006. PubMed ID: 10048041 [TBL] [Abstract][Full Text] [Related]
40. Positive and negative regulation of the bgl operon in Escherichia coli. Mahadevan S; Reynolds AE; Wright A J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]