BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7559367)

  • 21. LytN, a murein hydrolase in the cross-wall compartment of Staphylococcus aureus, is involved in proper bacterial growth and envelope assembly.
    Frankel MB; Hendrickx AP; Missiakas DM; Schneewind O
    J Biol Chem; 2011 Sep; 286(37):32593-605. PubMed ID: 21784864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The small RNA SprX regulates the autolysin regulator WalR in Staphylococcus aureus.
    Buchad H; Nair M
    Microbiol Res; 2021 Sep; 250():126785. PubMed ID: 34000511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological significance of the peptidoglycan hydrolase, LytM, in Staphylococcus aureus.
    Singh VK; Carlos MR; Singh K
    FEMS Microbiol Lett; 2010 Oct; 311(2):167-75. PubMed ID: 20738399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope.
    Bobrovskyy M; Willing SE; Schneewind O; Missiakas D
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30082459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The staphylokinase gene is located in the structural gene encoding N-acetylmuramyl-L-alanine amidase in methicillin-resistant Staphylococcus aureus.
    Horii T; Yokoyama K; Barua S; Odagiri T; Futamura N; Hasegawa T; Ohta M
    FEMS Microbiol Lett; 2000 Apr; 185(2):221-4. PubMed ID: 10754251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of LytSR-regulated genes from Staphylococcus aureus.
    Brunskill EW; Bayles KW
    J Bacteriol; 1996 Oct; 178(19):5810-2. PubMed ID: 8824633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localized perforation of the cell wall by a major autolysin: atl gene products and the onset of penicillin-induced lysis of Staphylococcus aureus.
    Sugai M; Yamada S; Nakashima S; Komatsuzawa H; Matsumoto A; Oshida T; Suginaka H
    J Bacteriol; 1997 May; 179(9):2958-62. PubMed ID: 9139914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity of the major staphylococcal autolysin Atl.
    Biswas R; Voggu L; Simon UK; Hentschel P; Thumm G; Götz F
    FEMS Microbiol Lett; 2006 Jun; 259(2):260-8. PubMed ID: 16734789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of cell wall binding domain of Staphylococcus aureus autolysin as affinity reagent for bacteria and its application to bacterial detection.
    Ahmed AB; Noguchi K; Asami Y; Nomura K; Fujii H; Sakata M; Tokita A; Noda K; Kuroda A
    J Biosci Bioeng; 2007 Jul; 104(1):55-61. PubMed ID: 17697984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Staphylococcus aureus produces autolysin-susceptible cell walls during growth in a high-NaCl and low-Ca2+ concentration medium.
    Ochiai T
    Microbiol Immunol; 2000; 44(2):97-104. PubMed ID: 10803496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular properties of the putative autolysin Atl(WM) encoded by Staphylococcus warneri M: mutational and biochemical analyses of the amidase and glucosaminidase domains.
    Yokoi KJ; Sugahara K; Iguchi A; Nishitani G; Ikeda M; Shimada T; Inagaki N; Yamakawa A; Taketo A; Kodaira K
    Gene; 2008 Jun; 416(1-2):66-76. PubMed ID: 18440165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance.
    Groicher KH; Firek BA; Fujimoto DF; Bayles KW
    J Bacteriol; 2000 Apr; 182(7):1794-801. PubMed ID: 10714982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracking the evolution of the bacterial choline-binding domain: molecular characterization of the Clostridium acetobutylicum NCIB 8052 cspA gene.
    Sanchez-Beato AR; Ronda C; Garcia JL
    J Bacteriol; 1995 Feb; 177(4):1098-103. PubMed ID: 7860591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The major autolysin is redundant for Staphylococcus aureus USA300 LAC JE2 virulence in a murine device-related infection model.
    McCarthy H; Waters EM; Bose JL; Foster S; Bayles KW; O'Neill E; Fey PD; O'Gara JP
    FEMS Microbiol Lett; 2016 May; 363(9):. PubMed ID: 27044299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of novel S. aureus autolysins and molecular engineering to enhance bacteriolytic activity.
    Osipovitch DC; Therrien S; Griswold KE
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6315-26. PubMed ID: 25690309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2.
    Foster SJ
    J Gen Microbiol; 1991 Aug; 137(8):1987-98. PubMed ID: 1683402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase.
    Horsburgh GJ; Atrih A; Williamson MP; Foster SJ
    Biochemistry; 2003 Jan; 42(2):257-64. PubMed ID: 12525152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of autolysins during vegetative growth of Bacillus subtilis 168.
    Blackman SA; Smith TJ; Foster SJ
    Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():73-82. PubMed ID: 9537764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus.
    Komatsuzawa H; Sugai M; Nakashima S; Yamada S; Matsumoto A; Oshida T; Suginaka H
    Microbiol Immunol; 1997; 41(6):469-79. PubMed ID: 9251058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum.
    Cibik R; Tailliez P; Langella P; Chapot-Chartier MP
    Appl Environ Microbiol; 2001 Feb; 67(2):858-64. PubMed ID: 11157255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.