These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 7559432)
21. Recombinant N-terminal nucleotide-binding domain from mouse P-glycoprotein. Overexpression, purification, and role of cysteine 430. Dayan G; Baubichon-Cortay H; Jault JM; Cortay JC; Deléage G; Di Pietro A J Biol Chem; 1996 May; 271(20):11652-8. PubMed ID: 8662620 [TBL] [Abstract][Full Text] [Related]
22. Reactivity of the H(+)-ATPase from Kluyveromyces lactis to sulfhydryl reagents. Guerra G; Uribe S; Pardo JP Arch Biochem Biophys; 1995 Aug; 321(1):101-7. PubMed ID: 7639507 [TBL] [Abstract][Full Text] [Related]
23. Loss of cyclosporin and azidopine binding are associated with altered ATPase activity by a mutant P-glycoprotein with deleted phe(335). Chen KG; Lacayo NJ; Durán GE; Cohen D; Sikic BI Mol Pharmacol; 2000 Apr; 57(4):769-77. PubMed ID: 10727524 [TBL] [Abstract][Full Text] [Related]
24. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Jan; 278(3):1575-8. PubMed ID: 12421806 [TBL] [Abstract][Full Text] [Related]
25. Characterization of prenylcysteines that interact with P-glycoprotein and inhibit drug transport in tumor cells. Zhang L; Sachs CW; Fu HW; Fine RL; Casey PJ J Biol Chem; 1995 Sep; 270(39):22859-65. PubMed ID: 7559420 [TBL] [Abstract][Full Text] [Related]
26. Both ATP sites of human P-glycoprotein are essential but not symmetric. Hrycyna CA; Ramachandra M; Germann UA; Cheng PW; Pastan I; Gottesman MM Biochemistry; 1999 Oct; 38(42):13887-99. PubMed ID: 10529234 [TBL] [Abstract][Full Text] [Related]
27. Cloning, overexpression, purification, and characterization of the carboxyl-terminal nucleotide binding domain of P-glycoprotein. Sharma S; Rose DR J Biol Chem; 1995 Jun; 270(23):14085-93. PubMed ID: 7775470 [TBL] [Abstract][Full Text] [Related]
28. Reactive cysteines of the yeast plasma-membrane H+-ATPase (PMA1). Mapping the sites of inactivation by N-ethylmaleimide. Petrov VV; Pardo JP; Slayman CW J Biol Chem; 1997 Jan; 272(3):1688-93. PubMed ID: 8999847 [TBL] [Abstract][Full Text] [Related]
29. N-Ethylmaleimide inactivates a nucleotide-free Hsp70 molecular chaperone. Liu Q; Levy EJ; Chirico WJ J Biol Chem; 1996 Nov; 271(47):29937-44. PubMed ID: 8939938 [TBL] [Abstract][Full Text] [Related]
30. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. Loo TW; Clarke DM J Biol Chem; 2001 May; 276(18):14972-9. PubMed ID: 11279063 [TBL] [Abstract][Full Text] [Related]
31. Nucleotide-induced conformational changes in P-glycoprotein and in nucleotide binding site mutants monitored by trypsin sensitivity. Julien M; Gros P Biochemistry; 2000 Apr; 39(15):4559-68. PubMed ID: 10758006 [TBL] [Abstract][Full Text] [Related]
32. Mutations in the nucleotide-binding sites of P-glycoprotein that affect substrate specificity modulate substrate-induced adenosine triphosphatase activity. Beaudet L; Urbatsch IL; Gros P Biochemistry; 1998 Jun; 37(25):9073-82. PubMed ID: 9636053 [TBL] [Abstract][Full Text] [Related]
33. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Ambudkar SV Methods Enzymol; 1998; 292():504-14. PubMed ID: 9711578 [No Abstract] [Full Text] [Related]
34. Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein. Shepard RL; Winter MA; Hsaio SC; Pearce HL; Beck WT; Dantzig AH Biochem Pharmacol; 1998 Sep; 56(6):719-27. PubMed ID: 9751076 [TBL] [Abstract][Full Text] [Related]
35. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Urbatsch IL; al-Shawi MK; Senior AE Biochemistry; 1994 Jun; 33(23):7069-76. PubMed ID: 7911680 [TBL] [Abstract][Full Text] [Related]
36. The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. Rothnie A; Storm J; Campbell J; Linton KJ; Kerr ID; Callaghan R J Biol Chem; 2004 Aug; 279(33):34913-21. PubMed ID: 15192095 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutagenesis within an ectoplasmic ATPase consensus sequence abrogates the cell aggregating properties of the rat liver canalicular bile acid transporter/ecto-ATPase/cell CAM 105 and carcinoembryonic antigen. Sippel CJ; Shen T; Perlmutter DH J Biol Chem; 1996 Dec; 271(51):33095-104. PubMed ID: 8955157 [TBL] [Abstract][Full Text] [Related]
38. The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F. Morgan CT; Tsivkovskii R; Kosinsky YA; Efremov RG; Lutsenko S J Biol Chem; 2004 Aug; 279(35):36363-71. PubMed ID: 15205462 [TBL] [Abstract][Full Text] [Related]
39. Val133 and Cys137 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2004 Apr; 279(18):18232-8. PubMed ID: 14749322 [TBL] [Abstract][Full Text] [Related]
40. Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12. Loo TW; Clarke DM J Biol Chem; 1997 Aug; 272(34):20986-9. PubMed ID: 9261097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]