BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 7559470)

  • 1. Mutations in the elongation factor 2 gene which confer resistance to diphtheria toxin and Pseudomonas exotoxin A. Genetic and biochemical analyses.
    Foley BT; Moehring JM; Moehring TJ
    J Biol Chem; 1995 Sep; 270(39):23218-25. PubMed ID: 7559470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly frequent single amino acid substitution in mammalian elongation factor 2 (EF-2) results in expression of resistance to EF-2-ADP-ribosylating toxins.
    Kohno K; Uchida T
    J Biol Chem; 1987 Sep; 262(25):12298-305. PubMed ID: 2887567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutation in codon 717 of the CHO-K1 elongation factor 2 gene prevents the first step in the biosynthesis of diphthamide.
    Foley BT; Moehring JM; Moehring TJ
    Somat Cell Mol Genet; 1992 May; 18(3):227-31. PubMed ID: 1353910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of diphtheria-toxin-resistant mutants lacking receptor function or containing nonribosylatable elongation factor 2.
    Kohno K; Uchida T; Mekada E; Okada Y
    Somat Cell Mol Genet; 1985 Sep; 11(5):421-31. PubMed ID: 3862242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.
    Morimoto H; Bonavida B
    J Immunol; 1992 Sep; 149(6):2089-94. PubMed ID: 1517572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor 2 in eukaryotic cells.
    Fendrick JL; Iglewski WJ; Moehring JM; Moehring TJ
    Eur J Biochem; 1992 Apr; 205(1):25-31. PubMed ID: 1313365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dominant-negative approach that prevents diphthamide formation confers resistance to Pseudomonas exotoxin A and diphtheria toxin.
    Roy V; Ghani K; Caruso M
    PLoS One; 2010 Dec; 5(12):e15753. PubMed ID: 21203470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A.
    Lee H; Iglewski WJ
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2703-7. PubMed ID: 6326138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of CAS, a human homologue to the yeast chromosome segregation gene CSE1, in toxin and tumor necrosis factor mediated apoptosis.
    Brinkmann U; Brinkmann E; Gallo M; Scherf U; Pastan I
    Biochemistry; 1996 May; 35(21):6891-9. PubMed ID: 8639641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. His-426 of the Pseudomonas aeruginosa exotoxin A is required for ADP-ribosylation of elongation factor II.
    Wozniak DJ; Hsu LY; Galloway DR
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8880-4. PubMed ID: 3143111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biosynthesis and biological function of diphthamide.
    Su X; Lin Z; Lin H
    Crit Rev Biochem Mol Biol; 2013; 48(6):515-21. PubMed ID: 23971743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the diphthamide-containing loop within eukaryotic elongation factor 2 in ADP-ribosylation by Pseudomonas aeruginosa exotoxin A.
    Zhang Y; Liu S; Lajoie G; Merrill AR
    Biochem J; 2008 Jul; 413(1):163-74. PubMed ID: 18373493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.
    Kimata Y; Harashima S; Kohno K
    Biochem Biophys Res Commun; 1993 Mar; 191(3):1145-51. PubMed ID: 8466491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal assignment of the gene for human elongation factor 2.
    Kaneda Y; Yoshida MC; Kohno K; Uchida T; Okada Y
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3158-62. PubMed ID: 6427766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical analysis of CRM 66. A nonfunctional Pseudomonas aeruginosa exotoxin A.
    Galloway DR; Hedstrom RC; McGowan JL; Kessler SP; Wozniak DJ
    J Biol Chem; 1989 Sep; 264(25):14869-73. PubMed ID: 2504713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Furin activates Pseudomonas exotoxin A by specific cleavage in vivo and in vitro.
    Inocencio NM; Moehring JM; Moehring TJ
    J Biol Chem; 1994 Dec; 269(50):31831-5. PubMed ID: 7989356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of DPH1 and DPH5 Protein Variants on the Synthesis of Diphthamide, the Target of ADPRibosylating Toxins.
    Mayer K; Schröder A; Schnitger J; Stahl S; Brinkmann U
    Toxins (Basel); 2017 Feb; 9(3):. PubMed ID: 28245596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA; Collier RJ
    Curr Top Microbiol Immunol; 1992; 175():27-41. PubMed ID: 1628498
    [No Abstract]   [Full Text] [Related]  

  • 20. Endogenous ADP-ribosylation of elongation factor-2 by interleukin-1β.
    Jäger D; Werdan K; Müller-Werdan U
    Mol Cell Biochem; 2011 Feb; 348(1-2):125-8. PubMed ID: 21088871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.