BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7559506)

  • 1. The glutamine hydrolysis function of human GMP synthetase. Identification of an essential active site cysteine.
    Nakamura J; Straub K; Wu J; Lou L
    J Biol Chem; 1995 Oct; 270(40):23450-5. PubMed ID: 7559506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase.
    Zalkin H; Truitt CD
    J Biol Chem; 1977 Aug; 252(15):5431-6. PubMed ID: 18463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for acivicin inactivation of triad glutamine amidotransferases.
    Chittur SV; Klem TJ; Shafer CM; Davisson VJ
    Biochemistry; 2001 Jan; 40(4):876-87. PubMed ID: 11170408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs.
    Casey CA; Anderson PM
    J Biol Chem; 1983 Jul; 258(14):8723-32. PubMed ID: 6602805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence of a peptide containing an essential cysteine residue of Escherichia coli GMP synthetase.
    Truitt CD; Hermodson MA; Zalkin H
    J Biol Chem; 1978 Dec; 253(23):8470-3. PubMed ID: 213434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia channeling in Plasmodium falciparum GMP synthetase: investigation by NMR spectroscopy and biochemical assays.
    Bhat JY; Venkatachala R; Singh K; Gupta K; Sarma SP; Balaram H
    Biochemistry; 2011 Apr; 50(16):3346-56. PubMed ID: 21413787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into the Functioning of a Two-Subunit GMP Synthetase, an Allosterically Regulated, Ammonia Channeling Enzyme.
    Shivakumaraswamy S; Kumar S; Bellur A; Polisetty SD; Balaram H
    Biochemistry; 2022 Sep; 61(18):1988-2006. PubMed ID: 36040251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-induced conformational changes in Plasmodium falciparum guanosine monophosphate synthetase.
    Bhat JY; Venkatachala R; Balaram H
    FEBS J; 2011 Oct; 278(19):3756-68. PubMed ID: 21827625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N2-hydroxyguanosine 5'-monophosphate is a time-dependent inhibitor of Escherichia coli guanosine monophosphate synthetase.
    Deras ML; Chittur SV; Davisson VJ
    Biochemistry; 1999 Jan; 38(1):303-10. PubMed ID: 9890911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the amidotransferase activity of carbamoyl phosphate synthetase by the antibiotic acivicin.
    Miles BW; Thoden JB; Holden HM; Raushel FM
    J Biol Chem; 2002 Feb; 277(6):4368-73. PubMed ID: 11729189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase.
    Zalkin H; Argos P; Narayana SV; Tiedeman AA; Smith JM
    J Biol Chem; 1985 Mar; 260(6):3350-4. PubMed ID: 2982857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of human GMP synthetase.
    Nakamura J; Lou L
    J Biol Chem; 1995 Mar; 270(13):7347-53. PubMed ID: 7706277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanosine-5'-phosphate synthetase and guanosine-5'-phosphate kinase in rat hepatomas and kidney tumors.
    Boritzki TJ; Jackson RC; Morris HP; Weber G
    Biochim Biophys Acta; 1981 Mar; 658(1):102-10. PubMed ID: 6260205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo inactivation of formylglycinamidine ribonucleotide synthetase in rat hepatoma.
    Elliott WL; Weber G
    Biochem Pharmacol; 1985 Jan; 34(2):243-8. PubMed ID: 3966925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo inactivation by acivicin of carbamoyl-phosphate synthetase II in rat hepatoma.
    Aoki T; Sebolt J; Weber G
    Biochem Pharmacol; 1982 Mar; 31(6):927-32. PubMed ID: 7082374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site.
    Kim JH; Krahn JM; Tomchick DR; Smith JL; Zalkin H
    J Biol Chem; 1996 Jun; 271(26):15549-57. PubMed ID: 8663035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity and oligomerization of human GMP synthetase.
    Welin M; Lehtiö L; Johansson A; Flodin S; Nyman T; Trésaugues L; Hammarström M; Gräslund S; Nordlund P
    J Mol Biol; 2013 Nov; 425(22):4323-33. PubMed ID: 23816837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Pinching" the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage.
    McCluskey GD; Bearne SL
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2714-2727. PubMed ID: 30251661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families.
    Tesmer JJ; Klem TJ; Deras ML; Davisson VJ; Smith JL
    Nat Struct Biol; 1996 Jan; 3(1):74-86. PubMed ID: 8548458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.