These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 7559541)
1. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. Vera JC; Rivas CI; Velásquez FV; Zhang RH; Concha II; Golde DW J Biol Chem; 1995 Oct; 270(40):23706-12. PubMed ID: 7559541 [TBL] [Abstract][Full Text] [Related]
2. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952 [TBL] [Abstract][Full Text] [Related]
3. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells. Park JB; Levine M J Nutr; 2000 May; 130(5):1297-302. PubMed ID: 10801933 [TBL] [Abstract][Full Text] [Related]
5. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. Vera JC; Reyes AM; Cárcamo JG; Velásquez FV; Rivas CI; Zhang RH; Strobel P; Iribarren R; Scher HI; Slebe JC J Biol Chem; 1996 Apr; 271(15):8719-24. PubMed ID: 8621505 [TBL] [Abstract][Full Text] [Related]
6. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. Corpe CP; Lee JH; Kwon O; Eck P; Narayanan J; Kirk KL; Levine M J Biol Chem; 2005 Feb; 280(7):5211-20. PubMed ID: 15590689 [TBL] [Abstract][Full Text] [Related]
7. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts. Bigley R; Wirth M; Layman D; Riddle M; Stankova L Diabetes; 1983 Jun; 32(6):545-8. PubMed ID: 6354783 [TBL] [Abstract][Full Text] [Related]
8. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. Maulén NP; Henríquez EA; Kempe S; Cárcamo JG; Schmid-Kotsas A; Bachem M; Grünert A; Bustamante ME; Nualart F; Vera JC J Biol Chem; 2003 Mar; 278(11):9035-41. PubMed ID: 12381735 [TBL] [Abstract][Full Text] [Related]
9. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. Siushansian R; Tao L; Dixon SJ; Wilson JX J Neurochem; 1997 Jun; 68(6):2378-85. PubMed ID: 9166731 [TBL] [Abstract][Full Text] [Related]
10. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836 [TBL] [Abstract][Full Text] [Related]
11. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol. Daskalopoulos R; Korcok J; Tao L; Wilson JX Glia; 2002 Aug; 39(2):124-32. PubMed ID: 12112364 [TBL] [Abstract][Full Text] [Related]
13. Sodium-dependent ascorbic and dehydroascorbic acid uptake by SV-40-transformed retinal pigment epithelial cells. Lam KW; Yu HS; Glickman RD; Lin T Ophthalmic Res; 1993; 25(2):100-7. PubMed ID: 8391673 [TBL] [Abstract][Full Text] [Related]
14. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Vera JC; Rivas CI; Fischbarg J; Golde DW Nature; 1993 Jul; 364(6432):79-82. PubMed ID: 8316303 [TBL] [Abstract][Full Text] [Related]
15. Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties. Rumsey SC; Welch RW; Garraffo HM; Ge P; Lu SF; Crossman AT; Kirk KL; Levine M J Biol Chem; 1999 Aug; 274(33):23215-22. PubMed ID: 10438494 [TBL] [Abstract][Full Text] [Related]
16. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707 [TBL] [Abstract][Full Text] [Related]
17. Role of monosaccharide transporter in vitamin C uptake by placental membrane vesicles. Ingermann RL; Stankova L; Bigley RH Am J Physiol; 1986 Apr; 250(4 Pt 1):C637-41. PubMed ID: 3963175 [TBL] [Abstract][Full Text] [Related]
18. Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells. Vera JC; Rivas CI; Zhang RH; Golde DW Blood; 1998 Apr; 91(7):2536-46. PubMed ID: 9516155 [TBL] [Abstract][Full Text] [Related]
19. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Agus DB; Vera JC; Golde DW Cancer Res; 1999 Sep; 59(18):4555-8. PubMed ID: 10493506 [TBL] [Abstract][Full Text] [Related]
20. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. Agus DB; Gambhir SS; Pardridge WM; Spielholz C; Baselga J; Vera JC; Golde DW J Clin Invest; 1997 Dec; 100(11):2842-8. PubMed ID: 9389750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]