These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7559676)

  • 1. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model.
    Mann KA; Bartel DL; Wright TM; Burstein AH
    J Biomech; 1995 Sep; 28(9):1067-78. PubMed ID: 7559676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling debonded stem-cement interface for hip implants: effect of residual stresses.
    Nuño N; Amabili M
    Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):41-8. PubMed ID: 11779645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component.
    Lewis JL; Askew MJ; Wixson RL; Kramer GM; Tarr RR
    J Bone Joint Surg Am; 1984 Feb; 66(2):280-6. PubMed ID: 6693456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip.
    Norman TL; Saligrama VC; Hustosky KT; Gruen TA; Blaha JD
    J Biomech Eng; 1996 Aug; 118(3):399-404. PubMed ID: 8872263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study.
    Al-Jassir FF; Fouad H; Alothman OY
    Biomed Eng Online; 2013 Jan; 12():5. PubMed ID: 23324627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.
    Lennon AB; Prendergast PJ
    J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface.
    Ramaniraka NA; Rakotomanana LR; Leyvraz PF
    J Bone Joint Surg Br; 2000 Mar; 82(2):297-303. PubMed ID: 10755444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding.
    Verdonschot N; Tanck E; Huiskes R
    J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical effects of stem cement interface characteristics in total hip replacement.
    Verdonschot N; Huiskes R
    Clin Orthop Relat Res; 1996 Aug; (329):326-36. PubMed ID: 8769468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue fracture of a forged cobalt-chromium-molybdenum femoral component inserted with cement. A report of ten cases.
    Woolson ST; Milbauer JP; Bobyn JD; Yue S; Maloney WJ
    J Bone Joint Surg Am; 1997 Dec; 79(12):1842-8. PubMed ID: 9409798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.
    Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T
    J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement.
    Lu Z; McKellop H
    J Biomed Mater Res; 1997 Feb; 34(2):221-6. PubMed ID: 9029302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of material properties of femoral hip components on bone remodeling.
    Weinans H; Huiskes R; Grootenboer HJ
    J Orthop Res; 1992 Nov; 10(6):845-53. PubMed ID: 1403299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.