These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7559682)

  • 1. Active force in rabbit ventricular myocytes.
    Bluhm WF; McCulloch AD; Lew WY
    J Biomech; 1995 Sep; 28(9):1119-22. PubMed ID: 7559682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations.
    Kentish JC; ter Keurs HE; Ricciardi L; Bucx JJ; Noble MI
    Circ Res; 1986 Jun; 58(6):755-68. PubMed ID: 3719928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle.
    Stuyvers BD; McCulloch AD; Guo J; Duff HJ; ter Keurs HE
    J Physiol; 2002 Nov; 544(3):817-30. PubMed ID: 12411526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Ca(2+) dynamics and sarcomere length in single ventricular myocytes.
    Powell T; Matsuoka S; Sarai N; Noma A
    Cell Calcium; 2004 Jun; 35(6):535-42. PubMed ID: 15110143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoring force development by titin/connectin and assessment of Ig domain unfolding.
    Preetha N; Yiming W; Helmes M; Norio F; Siegfried L; Granzier H
    J Muscle Res Cell Motil; 2005; 26(6-8):307-17. PubMed ID: 16470334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction.
    Mubagwa K; Lin W; Sipido K; Bosteels S; Flameng W
    J Mol Cell Cardiol; 1997 Mar; 29(3):977-89. PubMed ID: 9152859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stimulus interval-tension relation in enzymatically isolated single myocytes of the frog heart.
    Cecchi G; Colomo F; Poggesi C; Tesi C
    J Physiol; 1992 Mar; 448():275-91. PubMed ID: 1593468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between sarcomere length and active force in rabbit papillary muscle.
    Wohlfart B; Grimm AF; Edman KA
    Acta Physiol Scand; 1977 Oct; 101(2):155-64. PubMed ID: 920209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taking the first steps in contraction mechanics of single myocytes from frog heart.
    Brandt PW; Colomo F; Poggesi C; Tesi C
    Adv Exp Med Biol; 1993; 332():627-37. PubMed ID: 8109374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere dynamics in intact cardiac muscle.
    Pollack GH; Krueger JW
    Eur J Cardiol; 1976 May; 4 Suppl():53-65. PubMed ID: 1278219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcomere length-tension relations in living rat papillary muscle.
    Julian FJ; Sollins MR
    Circ Res; 1975 Sep; 37(3):299-308. PubMed ID: 1157219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of isolated cardiac myocytes.
    Brady AJ
    Physiol Rev; 1991 Apr; 71(2):413-28. PubMed ID: 2006219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titin determines the Frank-Starling relation in early diastole.
    Helmes M; Lim CC; Liao R; Bharti A; Cui L; Sawyer DB
    J Gen Physiol; 2003 Feb; 121(2):97-110. PubMed ID: 12566538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform.
    Kondo RP; Dederko DA; Teutsch C; Chrast J; Catalucci D; Chien KR; Giles WR
    J Physiol; 2006 Feb; 571(Pt 1):131-46. PubMed ID: 16357014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat released during relaxation equals force-length area in isometric contractions of rabbit papillary muscle.
    Mast F; Elzinga G
    Circ Res; 1990 Oct; 67(4):893-901. PubMed ID: 2208612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inotropic response of rabbit ventricular myocytes to endothelin-1: difference from isolated papillary muscles.
    Talukder MA; Norota I; Sakurai K; Endoh M
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H596-605. PubMed ID: 11454562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the mouse ventricular myocyte contraction.
    Mullins PD; Bondarenko VE
    PLoS One; 2013; 8(5):e63141. PubMed ID: 23671664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of thyroid state on sarcomere dynamics of ventricular cells and contraction of papillary muscles in the rat heart.
    Seppet EK; Eimre MA; Boldt W; Schenk W; Wussling M
    Cardioscience; 1991 Sep; 2(3):173-80. PubMed ID: 1742466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat.
    Hofmann PA; Moss RL
    Circ Res; 1992 May; 70(5):885-92. PubMed ID: 1568299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependence of passive properties of cardiac sarcomeres.
    Stuyvers BD; Miura M; ter Keurs HE
    Adv Exp Med Biol; 2000; 481():353-66; discussion 367-70. PubMed ID: 10987083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.