These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7559716)

  • 1. Microvascular transplantation of physeal allografts.
    Boyer MI; Danska JS; Nolan L; Kiral A; Bowen CV
    J Bone Joint Surg Br; 1995 Sep; 77(5):806-14. PubMed ID: 7559716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival of microvascular physeal allograft transplants following withdrawal of short-term postoperative immunosuppression.
    Bray PW; Neligan PC; Bowen CV; Boyer MI
    J Bone Joint Surg Am; 2004 Feb; 86(2):281-9. PubMed ID: 14960672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can quantitative 99mTc-MDP bone scans be used to predict longitudinal growth of epiphyseal plate allografts after microvascular transplantation? An experimental study.
    Boyer MI; Gilday D; Kiral A; Nolan L; Bowen CV
    Microsurgery; 1995; 16(3):155-60. PubMed ID: 7637624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of new model for microvascular transplantation of epiphyseal plate allografts with minimal adjoining epiphyseal and metaphyseal bone.
    Bray PW; Neligan PC; Bowen CV; Danska JS; Boyer MI
    Microsurgery; 2003; 23(2):153-63. PubMed ID: 12740889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of [99mTc]technetium methylene diphosphonate in the growth plates of the rabbit tibia during the final part of epiphyseal growth activity.
    Van Roermund PM; Haaring C; van Rijk PP; Renooij W
    Acta Orthop Belg; 1994; 60(4):369-73. PubMed ID: 7847084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of epiphyseal plate allograft viability and function after ex vivo storage in University of Wisconsin Solution.
    Ravindran S; Boyer MI; Martens E; Ntouvali H; McAlinden A
    J Pediatr Orthop; 2011; 31(7):803-10. PubMed ID: 21926881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of epiphyseal plate allografts between animals of different ages.
    Stevens DG; Boyer MI; Bowen CV
    J Pediatr Orthop; 1999; 19(3):398-403. PubMed ID: 10344328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epiphyseal plate transplantation between sites of different growth potential.
    Glickman AM; Yang JP; Stevens DG; Bowen CV
    J Pediatr Orthop; 2000; 20(3):289-95. PubMed ID: 10823592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal growth rate following slow physeal distraction. The proximal tibial growth plate studied in rabbits.
    Pereira BP; Cavanagh SP; Pho RW
    Acta Orthop Scand; 1997 Jun; 68(3):262-8. PubMed ID: 9246990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging of remaining physis in partial physeal resection with graft interposition in a rabbit model: a comparison with physeal resection alone.
    Cheon JE; Kim IO; Choi IH; Kim CJ; Cho TJ; Kim WS; Yoo WJ; Yeon KM
    Invest Radiol; 2005 Apr; 40(4):235-42. PubMed ID: 15770142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on vascularized bone allografts for reconstruction of massive bone defects.
    Shigetomi M; Doi K; Kuwata N; Muramatsu K; Yamamoto H; Kawai S
    Microsurgery; 1994; 15(9):663-70. PubMed ID: 7845198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physeal distraction and cell proliferation in the growth plate.
    Apte SS; Kenwright J
    J Bone Joint Surg Br; 1994 Sep; 76(5):837-43. PubMed ID: 8083281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free physeal transplantation in the rabbit. An experimental approach to focal lesions.
    Olin A; Creasman C; Shapiro F
    J Bone Joint Surg Am; 1984 Jan; 66(1):7-20. PubMed ID: 6418748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physeal distraction on the vascular supply of the growth area: a microangiographical study in rabbits.
    Alberty A
    J Pediatr Orthop; 1993; 13(3):373-7. PubMed ID: 8496375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study in vivo of the effects of a static compressive load on the proximal tibial physis in rabbits.
    Bries AD; Weiner DS; Jacquet R; Adamczyk MJ; Morscher MA; Lowder E; Askew MJ; Steiner RP; Horne WI; Landis WJ
    J Bone Joint Surg Am; 2012 Aug; 94(15):e1111-10. PubMed ID: 22855000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmental bone grafting. Comparison of different types of graft in dogs.
    Aebi M; Regazzoni P; Schwarzenbach O
    Int Orthop; 1989; 13(2):101-11. PubMed ID: 2744911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient disturbance in physeal morphology is associated with long-term effects of nitrogen-containing bisphosphonates in growing rabbits.
    Smith EJ; Little DG; Briody JN; McEvoy A; Smith NC; Eisman JA; Gardiner EM
    J Bone Miner Res; 2005 Oct; 20(10):1731-41. PubMed ID: 16160731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation of the hypertrophic chondrocytes of the growth plate after physeal distraction. An experimental study in rabbits.
    Alberty A; Peltonen J
    Clin Orthop Relat Res; 1993 Dec; (297):7-11. PubMed ID: 8242954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of physeal injury upon growth correction of deformed rat tibia.
    Kwon DJ; Moon MS
    Int Surg; 1980; 65(4):341-5. PubMed ID: 7228560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different methods used to inhibit physeal growth in a rabbit model.
    Ross TK; Zionts LE
    Clin Orthop Relat Res; 1997 Jul; (340):236-43. PubMed ID: 9224262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.