BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 7560000)

  • 1. Characterization of ultrastructural and contractile activation properties of crustacean (Cherax destructor) muscle fibres during claw regeneration and moulting.
    West JM; Humphris DC; Stephenson DG
    J Muscle Res Cell Motil; 1995 Jun; 16(3):267-84. PubMed ID: 7560000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in maximal activation properties of skinned short- and long-sarcomere muscle fibres from the claw of the freshwater crustacean Cherax destructor.
    West JM; Humphris DC; Stephenson DG
    J Muscle Res Cell Motil; 1992 Dec; 13(6):668-84. PubMed ID: 1491074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ and Sr2+ activation properties of skinned muscle fibres with different regulatory systems from crustacea and rat.
    West JM; Stephenson DG
    J Physiol; 1993 Mar; 462():579-96. PubMed ID: 8331593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.
    Launikonis BS; Stephenson DG
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):299-312. PubMed ID: 10896719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of sarcomere length and selective elimination of myosin filaments on the localization and orientation of triads in rat muscle fibres.
    Takekura H; Kasuga N; Yoshioka T
    J Muscle Res Cell Motil; 1996 Apr; 17(2):235-42. PubMed ID: 8793725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere lengths in rat and toad skeletal muscle.
    Stephenson DG; Stewart AW; Wilson GJ
    J Physiol; 1989 Mar; 410():351-66. PubMed ID: 2529371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury.
    Balnave CD; Davey DF; Allen DG
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):649-59. PubMed ID: 9279815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing the ascending limb of the sarcomere length-tension relationship in rabbit skinned muscle fibres.
    Allen JD; Moss RL
    J Physiol; 1987 Sep; 390():119-36. PubMed ID: 2450989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of arginine, glutamate and phosphoarginine on Ca(2+)-activation properties of muscle fibres from crayfish and rat.
    Jame DW; West JM; Dooley PC; Stephenson DG
    J Muscle Res Cell Motil; 2004; 25(7):497-508. PubMed ID: 15711880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean sarcomere length-force relationship of rat muscle fibre bundles.
    Zuurbier CJ; Heslinga JW; Lee-de Groot MB; Van der Laarse WJ
    J Biomech; 1995 Jan; 28(1):83-7. PubMed ID: 7852444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
    Reconditi M; Brunello E; Fusi L; Linari M; Martinez MF; Lombardi V; Irving M; Piazzesi G
    J Physiol; 2014 Mar; 592(5):1119-37. PubMed ID: 24344169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium and strontium activation of single skinned muscle fibres of normal and dystrophic mice.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1986 Apr; 373():513-25. PubMed ID: 3746681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of length on the relationship between tension and intracellular [Ca2+] in intact frog skeletal muscle fibres.
    Claflin DR; Morgan DL; Julian FJ
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):179-86. PubMed ID: 9490836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force-length relationship of mechanically isolated sarcomeres.
    Herzog W; Joumaa V; Leonard TR
    Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomeric pattern formation by actin cluster coalescence.
    Friedrich BM; Fischer-Friedrich E; Gov NS; Safran SA
    PLoS Comput Biol; 2012; 8(6):e1002544. PubMed ID: 22685394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.