BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7560004)

  • 1. Alternate disposition of tetrads in peripheral couplings of skeletal muscle.
    Franzini-Armstrong C; Kish JW
    J Muscle Res Cell Motil; 1995 Jun; 16(3):319-24. PubMed ID: 7560004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells.
    Protasi F; Franzini-Armstrong C; Flucher BE
    J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle.
    Sun XH; Protasi F; Takahashi M; Takeshima H; Ferguson DG; Franzini-Armstrong C
    J Cell Biol; 1995 May; 129(3):659-71. PubMed ID: 7730402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle.
    Franzini-Armstrong C; Protasi F; Ramesh V
    Ann N Y Acad Sci; 1998 Sep; 853():20-30. PubMed ID: 10603933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the excitation-contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially.
    Takekura H; Sun X; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1994 Apr; 15(2):102-18. PubMed ID: 8051285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle.
    Protasi F; Franzini-Armstrong C; Allen PD
    J Cell Biol; 1998 Feb; 140(4):831-42. PubMed ID: 9472035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor.
    Takekura H; Nishi M; Noda T; Takeshima H; Franzini-Armstrong C
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3381-5. PubMed ID: 7724570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA.
    Takekura H; Bennett L; Tanabe T; Beam KG; Franzini-Armstrong C
    Biophys J; 1994 Aug; 67(2):793-803. PubMed ID: 7948692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relative position of RyR feet and DHPR tetrads in skeletal muscle.
    Paolini C; Protasi F; Franzini-Armstrong C
    J Mol Biol; 2004 Sep; 342(1):145-53. PubMed ID: 15313613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings.
    Franzini-Armstrong C; Pincon-Raymond M; Rieger F
    Dev Biol; 1991 Aug; 146(2):364-76. PubMed ID: 1650725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
    Protasi F; Paolini C; Nakai J; Beam KG; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Dec; 83(6):3230-44. PubMed ID: 12496092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle.
    Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C
    Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and maturation of the calcium release apparatus in developing and adult avian myocardium.
    Protasi F; Sun XH; Franzini-Armstrong C
    Dev Biol; 1996 Jan; 173(1):265-78. PubMed ID: 8575628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles.
    Franzini-Armstrong C; Protasi F; Ramesh V
    Biophys J; 1999 Sep; 77(3):1528-39. PubMed ID: 10465763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle.
    Flucher BE; Andrews SB; Daniels MP
    Mol Biol Cell; 1994 Oct; 5(10):1105-18. PubMed ID: 7865878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers.
    Sorrentino V; Gerli R
    Ital J Anat Embryol; 2003; 108(2):65-76. PubMed ID: 14503655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions.
    Franzini-Armstrong C; Protasi F
    Physiol Rev; 1997 Jul; 77(3):699-729. PubMed ID: 9234963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional implications of RyR-dHPR relationships in skeletal and cardiac muscles.
    Franzini-Armstrong C
    Biol Res; 2004; 37(4):507-12. PubMed ID: 15709676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.