BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7560894)

  • 1. Elastic lamina growth in the developing mouse aorta.
    Davis EC
    J Histochem Cytochem; 1995 Nov; 43(11):1115-23. PubMed ID: 7560894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of elastin in the developing mouse aorta: a quantitative radioautographic study.
    Davis EC
    Histochemistry; 1993 Jul; 100(1):17-26. PubMed ID: 8226106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization.
    Davis EC
    Lab Invest; 1993 Jan; 68(1):89-99. PubMed ID: 8423679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta.
    Tonar Z; Kubíková T; Prior C; Demjén E; Liška V; Králíčková M; Witter K
    Ann Anat; 2015 Sep; 201():79-90. PubMed ID: 26232584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Cellular Contributions to Elastic Laminae Formation in Arterial Wall Development.
    Lin CJ; Staiculescu MC; Hawes JZ; Cocciolone AJ; Hunkins BM; Roth RA; Lin CY; Mecham RP; Wagenseil JE
    Circ Res; 2019 Nov; 125(11):1006-1018. PubMed ID: 31590613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 36-kDa microfibril-associated glycoprotein (MAGP-36) is an elastin-binding protein increased in chick aortae during development and growth.
    Toyoshima T; Nishi N; Kusama H; Kobayashi R; Itano T
    Exp Cell Res; 2005 Jul; 307(1):224-30. PubMed ID: 15922742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous exposure to low amplitude extremely low frequency electrical fields characterizing the vascular streaming potential alters elastin accumulation in vascular smooth muscle cells.
    Bergethon PR; Kindler DD; Hallock K; Blease S; Toselli P
    Bioelectromagnetics; 2013 Jul; 34(5):358-65. PubMed ID: 23322407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolabelling of freeze-fractured tissue: thin sections of rat aorta after labelling of elastic laminae.
    Ruggiero F; Lethias C; Garrone R
    Eur J Cell Biol; 1987 Aug; 44(1):90-2. PubMed ID: 3622536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histogenesis of tunica media of the chick aorta.
    Hiruma T; Hirakow R
    Kaibogaku Zasshi; 1992 Dec; 67(6):749-61. PubMed ID: 1296431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of elastic fibers of nuchal ligament, aorta, and lung of fetal and postnatal sheep: an ultrastructural and electron microscopic immunohistochemical study.
    Fukuda Y; Ferrans VJ; Crystal RG
    Am J Anat; 1984 Aug; 170(4):597-629. PubMed ID: 6475819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in morphology of elastin fibers during development of the tunica intima of monkey aorta.
    Sato F; Shimada T; Kitamura H; Campbell GR; Ogata J
    Heart Vessels; 1994; 9(3):140-7. PubMed ID: 8056720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of elastin, collagen, and glycosaminoglycans by high density primary cultures of neonatal rat aortic smooth muscle. An ultrastructural and biochemical study.
    Oakes BW; Batty AC; Handley CJ; Sandberg LB
    Eur J Cell Biol; 1982 Apr; 27(1):34-46. PubMed ID: 7084253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the orientation of elastin fibers in the elastic laminae of the pulmonary trunk and aorta of rabbits using the scanning electron microscope.
    Smith P
    Lab Invest; 1976 Dec; 35(6):525-9. PubMed ID: 994464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural and ultrahistochemical studies on the ventral aorta in larvae of a teleost, Poecilia reticulata.
    Leknes IL
    Anat Anz; 1986; 161(1):43-51. PubMed ID: 3010778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the size of fenestrations in the internal elastic lamina of young and old porcine aortas as seen with the scanning electron microscope.
    Dunmore PJ; Song SH; Roach MR
    Can J Physiol Pharmacol; 1990 Feb; 68(2):139-43. PubMed ID: 1690073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aortic tunica media of the developing rat. II. Incorporation by medial cells 3-H-proline into collagen and elastin: autoradiographic and chemical studies.
    Gerrity RG; Adams EP; Cliff WJ
    Lab Invest; 1975 May; 32(5):601-9. PubMed ID: 1127879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastin haploinsufficiency induces alternative aging processes in the aorta.
    Pezet M; Jacob MP; Escoubet B; Gheduzzi D; Tillet E; Perret P; Huber P; Quaglino D; Vranckx R; Li DY; Starcher B; Boyle WA; Mecham RP; Faury G
    Rejuvenation Res; 2008 Feb; 11(1):97-112. PubMed ID: 18173368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Morphological Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome.
    López-Guimet J; Andilla J; Loza-Alvarez P; Egea G
    Sci Rep; 2017 May; 7(1):1505. PubMed ID: 28473723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neointima formation on vascular elastic laminae and collagen matrices scaffolds implanted in the rat aortae.
    Liu SQ; Tieche C; Alkema PK
    Biomaterials; 2004 May; 25(10):1869-82. PubMed ID: 14738851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.
    Sugita S; Matsumoto T
    Biomech Model Mechanobiol; 2017 Jun; 16(3):763-773. PubMed ID: 27878400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.