These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7561)

  • 1. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH.
    Pollard HB; Zinder O; Hoffman PG; Nikodejevic O
    J Biol Chem; 1976 Aug; 251(15):4544-50. PubMed ID: 7561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.
    Johnson RG; Pfister D; Carty SE; Scarpa A
    J Biol Chem; 1979 Nov; 254(21):10963-72. PubMed ID: 40978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonmotive force and catecholamine transport in isolated chromaffin granules.
    Johnson RG; Scarpa A
    J Biol Chem; 1979 May; 254(10):3750-60. PubMed ID: 438157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of accumulation of tyramine, metaraminol, and isoproterenol in isolated chromaffin granules and ghosts.
    Johnson RG; Carty SE; Hayflick S; Scarpa A
    Biochem Pharmacol; 1982 Mar; 31(5):815-23. PubMed ID: 7082350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active proton uptake by chromaffin granules: observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques.
    Casey RP; Njus D; Radda GK; Sehr PA
    Biochemistry; 1977 Mar; 16(5):972-7. PubMed ID: 14667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of the transmembrane potential coupled to the ATP-evoked catecholamine release in isolated chromaffin granules.
    Ogawa M; Inouye A
    Jpn J Physiol; 1979; 29(3):309-25. PubMed ID: 502089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron probe microanalysis of the subcellular compartments of bovine adrenal chromaffin cells. Comparison of chromaffin granules in situ and in vitro.
    Ornberg RL; Kuijpers GA; Leapman RD
    J Biol Chem; 1988 Jan; 263(3):1488-93. PubMed ID: 3335554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The internal pH and membrane potential of the insulin-secretory granule.
    Hutton JC
    Biochem J; 1982 Apr; 204(1):171-8. PubMed ID: 6126183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion permeability of isolated chromaffin granules.
    Johnson RG; Scarpa A
    J Gen Physiol; 1976 Dec; 68(6):601-31. PubMed ID: 11272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells.
    Knight DE; Baker PF
    J Membr Biol; 1985; 83(1-2):147-56. PubMed ID: 3873539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of delta pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses.
    Russell JT; Holz RW
    J Biol Chem; 1981 Jun; 256(12):5950-3. PubMed ID: 6972377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient.
    Carty SE; Johnson RG; Scarpa A
    J Biol Chem; 1981 Nov; 256(21):11244-50. PubMed ID: 6457050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential.
    Holz RW
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5190-4. PubMed ID: 33385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative lack of ATP-driven H+ translocase activity in isolated parotid secretory granules.
    Arvan P; Rudnick G; Castle JD
    J Biol Chem; 1985 Dec; 260(28):14945-52. PubMed ID: 2866180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.
    Hutton JC; Peshavaria M
    Biochem J; 1983 Jan; 210(1):235-42. PubMed ID: 6303313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of a transmembrane proton gradient in 5-hydroxytryptamine transport by platelet dense granules and dense-granule ghosts.
    Wilkins JA; Salganicoff L
    Biochem J; 1981 Jul; 198(1):113-23. PubMed ID: 6459780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the proton electrochemical gradient in monoamine transport by bovine chromaffin granules.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Oct; 601(3):664-77. PubMed ID: 7417444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characteristics of the ATP-stimulated uptake of calcium into chromaffin granules.
    Burger A; Niedermaier W; Langer R; Bode U
    J Neurochem; 1984 Sep; 43(3):806-15. PubMed ID: 6235324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.