These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 7561103)
1. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. Abrahamsohn IA; Coffman RL J Immunol; 1995 Oct; 155(8):3955-63. PubMed ID: 7561103 [TBL] [Abstract][Full Text] [Related]
2. [TH1 response in the experimental infection with Trypanosoma cruzi]. Cardoni RL; Antúnez MI; Abrami AA Medicina (B Aires); 1999; 59 Suppl 2():84-90. PubMed ID: 10668248 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma cruzi: Tc52 released protein-induced increased expression of nitric oxide synthase and nitric oxide production by macrophages. Fernandez-Gomez R; Esteban S; Gomez-Corvera R; Zoulika K; Ouaissi A J Immunol; 1998 Apr; 160(7):3471-9. PubMed ID: 9531308 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus. Rowland RR; Butz EA; Plagemann PG J Immunol; 1994 Jun; 152(12):5785-95. PubMed ID: 8207208 [TBL] [Abstract][Full Text] [Related]
5. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Muñoz-Fernández MA; Fernández MA; Fresno M Eur J Immunol; 1992 Feb; 22(2):301-7. PubMed ID: 1537373 [TBL] [Abstract][Full Text] [Related]
6. Differential control of IFN-gamma and IL-2 production during Trypanosoma cruzi infection. Nabors GS; Tarleton RL J Immunol; 1991 May; 146(10):3591-8. PubMed ID: 1902857 [TBL] [Abstract][Full Text] [Related]
7. Antigen-specific Il-4- and IL-10-secreting CD4+ lymphocytes increase in vivo susceptibility to Trypanosoma cruzi infection. Barbosa de Oliveira LC; Curotto de Lafaille MA; Collet de Araujo Lima GM; de Almeida Abrahamsohn I Cell Immunol; 1996 May; 170(1):41-53. PubMed ID: 8660798 [TBL] [Abstract][Full Text] [Related]
9. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. Alleva DG; Burger CJ; Elgert KD J Immunol; 1994 Aug; 153(4):1674-86. PubMed ID: 8046239 [TBL] [Abstract][Full Text] [Related]
10. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. Schleifer KW; Mansfield JM J Immunol; 1993 Nov; 151(10):5492-503. PubMed ID: 8228241 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. Albina JE; Abate JA; Henry WL J Immunol; 1991 Jul; 147(1):144-8. PubMed ID: 1904899 [TBL] [Abstract][Full Text] [Related]
12. Experimental murine Trypanosoma congolense infections. I. Administration of anti-IFN-gamma antibodies alters trypanosome-susceptible mice to a resistant-like phenotype. Uzonna JE; Kaushik RS; Gordon JR; Tabel H J Immunol; 1998 Nov; 161(10):5507-15. PubMed ID: 9820527 [TBL] [Abstract][Full Text] [Related]
13. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Gazzinelli RT; Oswald IP; Hieny S; James SL; Sher A Eur J Immunol; 1992 Oct; 22(10):2501-6. PubMed ID: 1396957 [TBL] [Abstract][Full Text] [Related]
14. Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi. Hoft DF; Lynch RG; Kirchhoff LV J Immunol; 1993 Dec; 151(12):7038-47. PubMed ID: 8258708 [TBL] [Abstract][Full Text] [Related]
15. Trypanosoma cruzi: the effect of nitric oxide synthesis inhibition on the CD4 T cell response to the trans-sialidase superfamily. Millar AE; Kahn SJ Exp Parasitol; 2000 Feb; 94(2):84-91. PubMed ID: 10673344 [TBL] [Abstract][Full Text] [Related]
16. In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. Reed SG J Immunol; 1988 Jun; 140(12):4342-7. PubMed ID: 3131431 [TBL] [Abstract][Full Text] [Related]
18. Characterization of cytokine production in murine Trypanosoma cruzi infection by in situ immunocytochemistry: lack of association between susceptibility and type 2 cytokine production. Zhang L; Tarleton RL Eur J Immunol; 1996 Jan; 26(1):102-9. PubMed ID: 8566051 [TBL] [Abstract][Full Text] [Related]
19. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Yoshida M; Takeuchi M; Streilein JW Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):811-21. PubMed ID: 10711698 [TBL] [Abstract][Full Text] [Related]
20. Activation-induced T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+ T lymphocytes from infected hosts. Nunes MP; Andrade RM; Lopes MF; DosReis GA J Immunol; 1998 Feb; 160(3):1313-9. PubMed ID: 9570549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]