These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7561721)
1. Effects of space flight on Xenopus laevis larval development. Snetkova E; Chelnaya N; Serova L; Saveliev S; Cherdanzova E; Pronych S; Wassersug R J Exp Zool; 1995 Sep; 273(1):21-32. PubMed ID: 7561721 [TBL] [Abstract][Full Text] [Related]
2. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity. Fejtek M; Souza K; Neff A; Wassersug R J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430 [TBL] [Abstract][Full Text] [Related]
3. Swimming kinematics and respiratory behaviour of xenopus laevis larvae raised in altered gravity. Fejtek M; Souza K; Neff A; Wassersug R J Exp Biol; 1998 May; 201 (Pt 12)():1917-26. PubMed ID: 9600873 [TBL] [Abstract][Full Text] [Related]
4. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis). Böser S; Dournon C; Gualandris-Parisot L; Horn E Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444 [TBL] [Abstract][Full Text] [Related]
5. Gravity-related critical periods in vestibular and tail development of Xenopus laevis. Horn ER; Gabriel M J Exp Zool A Ecol Genet Physiol; 2011 Nov; 315(9):505-11. PubMed ID: 21866581 [TBL] [Abstract][Full Text] [Related]
6. Gender-related sensitivity of development and growth to real microgravity in Xenopus laevis. Horn ER; Gabriel M J Exp Zool A Ecol Genet Physiol; 2014 Jan; 321(1):1-12. PubMed ID: 24123857 [TBL] [Abstract][Full Text] [Related]
7. Regulative development of Xenopus laevis in microgravity. Black S; Larkin K; Jacqmotte N; Wassersug R; Pronych S; Souza K Adv Space Res; 1996; 17(6-7):209-17. PubMed ID: 11538618 [TBL] [Abstract][Full Text] [Related]
8. Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Spaceshuttle during the Biorack experiment (ESA). Vernós I; González-Jurado J; Calleja M; Marco R Int J Dev Biol; 1989 Jun; 33(2):213-26. PubMed ID: 2518159 [TBL] [Abstract][Full Text] [Related]
10. Effects of high gravity on amphibian development. Kashiwagi A; Hanada H; Kawakami S; Kubo H; Shinkai T; Fujii H; Kashiwagi K Biol Sci Space; 2003 Oct; 17(3):215-6. PubMed ID: 14676383 [TBL] [Abstract][Full Text] [Related]
11. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments. DeBell L; Paulsen A; Spooner B Scanning Microsc; 1992; 6(4):1129-35. PubMed ID: 11539112 [TBL] [Abstract][Full Text] [Related]
12. Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis. Horn ER J Exp Biol; 2006 Aug; 209(Pt 15):2847-58. PubMed ID: 16857868 [TBL] [Abstract][Full Text] [Related]
13. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR. Orban JI; Piert SJ; Guryeva TS; Hester PY J Gravit Physiol; 1999 Oct; 6(2):33-41. PubMed ID: 11543084 [TBL] [Abstract][Full Text] [Related]
14. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis). Böser S; Horn ER Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789 [TBL] [Abstract][Full Text] [Related]
15. Amphibian development in the virtual absence of gravity. Souza KA; Black SD; Wassersug RJ Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1975-8. PubMed ID: 7892210 [TBL] [Abstract][Full Text] [Related]
16. Xenopus development from late gastrulation to feeding tadpole in simulated microgravity. Olson WM; Wiens DJ; Gaul TL; Rodriguez M; Hauptmeier CL Int J Dev Biol; 2010; 54(1):167-74. PubMed ID: 19876846 [TBL] [Abstract][Full Text] [Related]
17. Transient effects of microgravity on early embryos of Xenopus laevis. De Mazière A; Gonzalez-Jurado J; Reijnen M; Narraway J; Ubbels GA Adv Space Res; 1996; 17(6-7):219-23. PubMed ID: 11538620 [TBL] [Abstract][Full Text] [Related]
18. Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight. Briegleb W; Neubert J; Schatz A; Klein T; Kruse B Adv Space Res; 1986; 6(12):151-6. PubMed ID: 11537815 [TBL] [Abstract][Full Text] [Related]
19. Development of gravity-sensing organs in altered gravity. Wiederhold ML; Gao WY; Harrison JL; Hejl R Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125 [TBL] [Abstract][Full Text] [Related]
20. Xenopus laevis embryos can establish their spatial bilateral symmetrical body pattern without gravity. Ubbels GA; Reijnen M; Meijerink J; Narraway J Adv Space Res; 1994; 14(8):257-69. PubMed ID: 11537925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]