These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7561878)

  • 1. Increase in chloride-dependent L-glutamate transport activity in synaptic membrane after in vitro ischemic treatment.
    Koyama Y; Ishibashi T; Baba A
    J Neurochem; 1995 Oct; 65(4):1798-804. PubMed ID: 7561878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretreatment of rat brain slices with ouabain decreases chloride-dependent L-glutamate transport in synaptic membrane.
    Koyama Y; Ishibashi T; Iwata H; Baba A
    Neurochem Int; 1993 Aug; 23(2):149-55. PubMed ID: 8103694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of Cl(-)-dependent L-[35S]cysteic acid transport into rat brain synaptic membrane vesicles.
    Koyama Y; Baba A; Iwata H
    Neurochem Res; 1990 Dec; 15(12):1153-8. PubMed ID: 2097511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes.
    Recasens M; Pin JP; Bockaert J
    Neurosci Lett; 1987 Feb; 74(2):211-6. PubMed ID: 2883610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of the Ca2+-stimulated binding from the Cl- -dependent binding of [3H]glutamate in synaptic membranes from rat brain.
    Ogita K; Yoneda Y
    Neurosci Res; 1986 Dec; 4(2):129-42. PubMed ID: 2880324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent L-[3H]glutamate transport and expression of both system xc(-) subunits.
    Gochenauer GE; Robinson MB
    J Neurochem; 2001 Jul; 78(2):276-86. PubMed ID: 11461963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Cl(-)-independent binding sites for the excitatory amino acids: glutamate, aspartate and cysteine sulfinate in rat brain membranes.
    Pin JP; Rumigny JF; Bockaert J; Recasens M
    Brain Res; 1987 Jan; 402(1):11-20. PubMed ID: 2881598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-beta-benzyloxyaspartate.
    Phillis JW; Ren J; O'Regan MH
    Brain Res; 2000 Jun; 868(1):105-12. PubMed ID: 10841893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization increases chloride-dependent glutamate sequestration in synaptic membranes of rat cerebral cortex.
    Iwata H; Koyama Y; Baba A
    J Neurochem; 1989 Feb; 52(2):354-9. PubMed ID: 2562987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the properties of gamma-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain.
    Fykse EM; Christensen H; Fonnum F
    J Neurochem; 1989 Mar; 52(3):946-51. PubMed ID: 2465384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Ca2+-dependent proteases really responsible for Cl(-)-dependent and Ca2+-stimulated binding of [3H]glutamate in rat brain?
    Yoneda Y; Ogita K
    Brain Res; 1987 Jan; 400(1):70-9. PubMed ID: 2880636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of L-glutamate binding sites in rat spinal cord synaptic membranes: evidence for multiple chloride ion-dependent sites.
    Mena EE; Pagnozzi MJ; Gullak MF
    J Neurochem; 1986 Oct; 47(4):1052-60. PubMed ID: 2875127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes.
    Gemba T; Oshima T; Ninomiya M
    Neuroscience; 1994 Dec; 63(3):789-95. PubMed ID: 7898678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site.
    Zaczek R; Arlis S; Markl A; Murphy T; Drucker H; Coyle JT
    Neuropharmacology; 1987 Apr; 26(4):281-7. PubMed ID: 2884589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the binding of DL-[3H]-2-amino-4-phosphonobutyrate to L-glutamate-sensitive sites on rat brain synaptic membranes.
    Butcher SP; Collins JF; Roberts PJ
    Br J Pharmacol; 1983 Oct; 80(2):355-64. PubMed ID: 6140060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuroprotective agent MS-153 stimulates glutamate uptake.
    Shimada F; Shiga Y; Morikawa M; Kawazura H; Morikawa O; Matsuoka T; Nishizaki T; Saito N
    Eur J Pharmacol; 1999 Dec; 386(2-3):263-70. PubMed ID: 10618478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-[35S]cysteic acid selectively detects chloride-dependent L-glutamate transporters in synaptic membrane.
    Koyama Y; Baba A; Iwata H
    Brain Res; 1989 May; 487(1):113-9. PubMed ID: 2568869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and pharmacological analysis of L-[35S]cystine transport into rat brain synaptosomes.
    Flynn J; McBean GJ
    Neurochem Int; 2000 May; 36(6):513-21. PubMed ID: 10762088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport.
    Hurtado O; Moro MA; Cárdenas A; Sánchez V; Fernández-Tomé P; Leza JC; Lorenzo P; Secades JJ; Lozano R; Dávalos A; Castillo J; Lizasoain I
    Neurobiol Dis; 2005 Mar; 18(2):336-45. PubMed ID: 15686962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hyperosmolarity and ion substitutions on amino acid efflux from the ischemic rat cerebral cortex.
    Phillis JW; Song D; O'Regan MH
    Brain Res; 1999 May; 828(1-2):1-11. PubMed ID: 10320719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.