BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7562093)

  • 1. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efflux of lysine from the basolateral membrane of human cultured intestinal cells (Caco-2) occurs by different mechanisms depending on the extracellular availability of amino acids.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1997 Jun; 127(6):1183-90. PubMed ID: 9187634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport mechanisms of the large neutral amino acid L-phenylalanine in the human intestinal epithelial caco-2 cell line.
    Berger V; Larondelle Y; Trouet A; Schneider YJ
    J Nutr; 2000 Nov; 130(11):2780-8. PubMed ID: 11053521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotin transport in a human intestinal epithelial cell line (Caco-2).
    Ng KY; Borchardt RT
    Life Sci; 1993; 53(14):1121-7. PubMed ID: 8371628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport mechanisms of the imino acid L-proline in the human intestinal epithelial caco-2 cell line.
    Berger V; De Bremaeker N; Larondelle Y; Trouet A; Schneider YJ
    J Nutr; 2000 Nov; 130(11):2772-9. PubMed ID: 11053520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents.
    Ranaldi G; Islam K; Sambuy Y
    Antimicrob Agents Chemother; 1992 Jul; 36(7):1374-81. PubMed ID: 1510430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine.
    Hu M; Borchardt RT
    Biochim Biophys Acta; 1992 Jun; 1135(3):233-44. PubMed ID: 1623010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-independent lysine transport in human intestinal Caco-2 cells.
    Thwaites DT; Markovich D; Murer H; Simmons NL
    J Membr Biol; 1996 Jun; 151(3):215-24. PubMed ID: 8661509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepithelial transport of cholyltaurine by Caco-2 cell monolayers is sodium dependent.
    Chandler CE; Zaccaro LM; Moberly JB
    Am J Physiol; 1993 Jun; 264(6 Pt 1):G1118-25. PubMed ID: 8333540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells.
    Makhey VD; Guo A; Norris DA; Hu P; Yan J; Sinko PJ
    Pharm Res; 1998 Aug; 15(8):1160-7. PubMed ID: 9706044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies.
    Agarwal S; Jain R; Pal D; Mitra AK
    Int J Pharm; 2007 Mar; 332(1-2):147-52. PubMed ID: 17097248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell.
    Ho NF; Burton PS; Conradi RA; Barsuhn CL
    J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying saturable intestinal absorption of metformin.
    Proctor WR; Bourdet DL; Thakker DR
    Drug Metab Dispos; 2008 Aug; 36(8):1650-8. PubMed ID: 18458049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells.
    Rastogi H; Jana S
    Eur J Drug Metab Pharmacokinet; 2016 Feb; 41(1):33-43. PubMed ID: 25351179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of bile acids in a human intestinal epithelial cell line, Caco-2.
    Hidalgo IJ; Borchardt RT
    Biochim Biophys Acta; 1990 Jul; 1035(1):97-103. PubMed ID: 2383583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Na+ in the asymmetric paracellular transport of 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg across rabbit colonic segments and Caco-2 cell monolayers.
    Yen WC; Lee VH
    J Pharmacol Exp Ther; 1995 Oct; 275(1):114-9. PubMed ID: 7562538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanidine transport across the apical and basolateral membranes of human intestinal Caco-2 cells is mediated by two different mechanisms.
    Cova E; Laforenza U; Gastaldi G; Sambuy Y; Tritto S; Faelli A; Ventura U
    J Nutr; 2002 Jul; 132(7):1995-2003. PubMed ID: 12097682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells.
    Nerurkar MM; Ho NF; Burton PS; Vidmar TJ; Borchardt RT
    J Pharm Sci; 1997 Jul; 86(7):813-21. PubMed ID: 9232522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.